Skip to main content
Log in

Characterization of the orf1glnKamtB operon of Herbaspirillum seropedicae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Herbaspirillum seropedicae is an endophytic nitrogen-fixing bacterium that colonizes economically important grasses. In this organism, the amtB gene is co-transcribed with two other genes: glnK that codes for a PII-like protein and orf1 that codes for a probable periplasmatic protein of unknown function. The expression of the orf1glnKamtB operon is increased under nitrogen-limiting conditions and is dependent on NtrC. An amtB mutant failed to transport methylammonium. Post-translational control of nitrogenase was also partially impaired in this mutant, since a complete switch-off of nitrogenase after ammonium addition was not observed. This result suggests that the AmtB protein is involved in the signaling pathway for the reversible inactivation of nitrogenase in H. seropedicae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NP:

o-nitrophenol

ApR :

Ampicillin resistance

CmR :

Chloramphenicol resistance

KmR :

Kanamycin resistance

TcR :

Tetracycline resistance

SmR :

Streptomycin resistance

References

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov. sp nov., a new root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Olivares F, Dobereiner J (1991) Identication and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73

    Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795, DOI: 10.1016/j.jmb.2004.05.028

    Google Scholar 

  • Benelli EM, Souza EM, Funayama S, Rigo LU, Pedrosa FO (1997) Evidence for two possible glnB-type genes in Herbaspirillum seropedicae. J Bacteriol 179:4623–4626

    PubMed  CAS  Google Scholar 

  • Blakey D, Leech A, Thomas GH, Coutts G, Findlay K, Merrick M (2002) Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 364:527–535

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carr PD, Cheah E, Suffolk PM, Vasudevan SG, Dixon NE, Ollis DL (1996) X-ray structure of the signal transduction protein from Escherichia coli at 1.9Å. Acta Crystallogr Sect D: Biol Crystallogr 52:93–104, DOI: 10.1107/S0907444995007293

    Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132

    PubMed  CAS  Google Scholar 

  • Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536–545

    Article  PubMed  CAS  Google Scholar 

  • de Zamaroczy M (1998) Structural homologues P(II) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. Mol Microbiol 29:449–463, DOI: 10.1046/j.1365-2958.1998.00938.x

    Google Scholar 

  • Fu H, Burris RH (1989) Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. J Bacteriol 171:3168–3175

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Article  PubMed  CAS  Google Scholar 

  • Huergo LF, Noindorf L, Sousa EM, Steffens MBR, Yates GM, Pedrosa FO, Chubatsu LS (1999) Partial cloning of the ammonium transporter genes of Azospirillum brasilense and Herbaspirillum seropedicae. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivy. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305:1587–1594, DOI: 10.1126/science.1101952

    Google Scholar 

  • Kahsay RY, Gao G, Liao L (2005) An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 21:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Klassen G, Pedrosa FO, Souza EM, Funayama S, Rigo LU (1997) Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can J Microbiol 43:887–891

    Article  CAS  Google Scholar 

  • Kokotek W, Lotz W (1989) Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84:467–471

    Article  PubMed  CAS  Google Scholar 

  • Machado HB, Funayama S, Rigo LU, Pedrosa FO (1991) Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J Microbiol 37:549–553

    Article  CAS  Google Scholar 

  • Machado IM, Yates MG, Machado HB, Souza EM, Pedrosa FO (1996) Cloning and sequencing of the nitrogenase structural genes nifHDK of Herbaspirillum seropedicae. Braz J Med Biol Res 29:1599–1602

    PubMed  CAS  Google Scholar 

  • MacPherson KH, Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Luque E, Vasudevan SG, Ollis DL (1998) Crystallization and preliminary X-ray analysis of Escherichia coli GlnK. Acta Crystallogr Sect D: Biol Crystallogr 54:996–998, DOI: 10.1107/S0907444998001887

    Google Scholar 

  • Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 3:341–344, DOI: 10.1038/81656

    Google Scholar 

  • Martin DE, Hurek T, Reinhold-Hurek B (2000) Occurrence of three PII-like signal transmitter proteins in the diazotrophic proteobacterium Azoarcus sp. BH72. Mol Microbiol 38:276–288

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Reinhold-Hurek B (2002) Distinct roles of PII-like signal transmitter proteins and amtB in Regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. Strain BH72 184:2251–2259, DOI: 10.1128/JB.184.8.2251-2259.2002

  • Mead DA, Szczesna-Skorupa E, Kemper B (1986) Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng 1:67–74

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Nakai K, Kanehisa M (1991) Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11:95–110

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO, Benelli EM, Yates MG, Wassem R, Monteiro RA, Klassen G, Steffens MB, Souza EM, Chubatsu LS, Rigo LU (2001) Recent developments in the structural organization and regulation of nitrogen fixation genes in Herbaspirillum seropedicae. J Biotechnol 91:189–195, DOI: 10.1016/S0168-1656(01)00343-1

    Google Scholar 

  • Persuhn DC, Souza EM, Steffens MBR, Pedrosa FO, Yates MG, Rigo LU (2000) The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae. FEMS Microbiol Lett 192:217–221, DOI: 10.1016/S0378-1097(00)00435-3

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Simon R, Prieffer U, Puhler A (1983) A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram-negative bacteria. BioTechnology 1:784–791

    Article  CAS  Google Scholar 

  • Souza EM, Pedrosa FP, Rigo LU, Machado HB, Yates MG (2000) Expression of the nifA gene of Herbaspirillum seropedicae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element. Microbiology 146:1407–1418

    PubMed  CAS  Google Scholar 

  • Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ (1987) Promoters in the nodulation region of the Rhizobium leguminosarum sym plasmid pRL1JI. Plant Mol Biol 9:27–39

    Article  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Coutts G, Merrick M (2000a) The glnKamtB operon. A conserved gene pair in prokaryotes. Mol Microbiol 37:331–344, DOI: 10.1016/S0168-9525(99)01887-9

    Google Scholar 

  • Thomas GH, Mullins JG, Merrick M (2000b) Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 2:331–344, DOI: 10.1046/j.1365-2958.2000.01994.x

    Google Scholar 

  • Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Vasudevan SG, Ollis DL (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol 2821:149k–165k, DOI: 10.1006/jmbi.1998.1979

    Google Scholar 

  • Yakunin AF, Hallenbeck PC (2002) AmtB is necessary for NH4+-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184:4081–4088, DOI:10.1128/JB.184.15.4081-4088.2002

    Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York

    Google Scholar 

  • Zhang Y, Burris RH, Ludden PW, Roberts GP (1997) Regulation of nitrogen fixation in Azospirillum brasilense. FEMS Microbiol Lett 152:195–204, DOI: 10.1016/S0378-1097(97)00187-0

    Google Scholar 

  • Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li XD (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci USA 101:17090–17095, DOI: 10.1073/pnas.0406475101

    Google Scholar 

Download references

Acknowledgements

We are grateful to Luciano F. Huergo for the A. brasilense amtB fragment used in this work and Roseli Prado and Julieta Pie for technical assistance. We thank the Paraná State Genome Project Consortium (GENOPAR) for the plasmid HS03FP06E09. We also thank Geoffrey Yates for the criticism in reading the manuscript. This work was financially supported by PRONEX (FINEP/MCT/CNPq), CAPES, CNPq, Fundação Araucária, and Paraná Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leda S. Chubatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noindorf, L., Rego, F.G.M., Baura, V.A. et al. Characterization of the orf1glnKamtB operon of Herbaspirillum seropedicae . Arch Microbiol 185, 55–62 (2006). https://doi.org/10.1007/s00203-005-0066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0066-4

Keywords

Profiles

  1. Leda S. Chubatsu