Skip to main content

Advertisement

Log in

Degradation of rice bran hemicellulose by Paenibacillus sp. strain HC1: gene cloning, characterization and function of β-D-glucosidase as an enzyme involved in degradation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A bacterium (strain HC1) capable of assimilating rice bran hemicellulose was isolated from a soil and identified as belonging to the genus Paenibacillus through taxonomical and 16S rDNA sequence analysis. Strain HC1 cells grown on rice bran hemicellulose as a sole carbon source inducibly produced extracellular xylanase and intracellular glycosidases such as β-d-glucosidase and β-d-arabinosidase. One of them, β-d-glucosidase was further analyzed. A genomic DNA library of the bacterium was constructed in Escherichia coli and gene coding for β-d-glucosidase was cloned by screening for β-d-glucoside-degrading phenotype in E. coli cells. Nucleotide sequence determination indicated that the gene for the enzyme contained an open reading frame consisting of 1,347 bp coding for a polypeptide with a molecular mass of 51.4 kDa. The polypeptide exhibits significant homology with other bacterial β-d-glucosidases and belongs to glycoside hydrolase family 1. β-d-Glucosidase purified from E. coli cells was a monomeric enzyme with a molecular mass of 50 kDa most active at around pH 7.0 and 37°C. Strain HC1 glycosidases responsible for degradation of rice bran hemicellulose are expected to be useful for structurally determining and molecularly modifying rice bran hemicellulose and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RB:

Rice bran

TLC:

Thin-layer chromatography

X-Glc:

5-Bromo-4-chrolo-3-indoryl-β-d-glucopyranoside

p-NP:

p-nitrophenyl

HPLC:

High-performance liquid chromatography

KPB:

Potassium phosphate buffer

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

aa:

Amino acids

acc no:

Accession number

bglA :

Strain HC1 β-d-glucosidase gene

BglA:

Strain HC1 β-d-glucosidase

References

  • Akihisa T, Yasukawa K, Yamaura M, Ukiya M, Kimura Y, Shimizu N, Arai K (2000) Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 48:2313–2319

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Endo T, Nakakita R, Murata K, Yonemoto Y, Okayama K (1992) Effect of depolymerized alginates on growth of bifidobacteria. Biosci Biotech Bioeng 56:355–356

    Article  CAS  Google Scholar 

  • Aoe S, Oda T, Tojima T, Tanaka M, Tatsumi K, Mizutani T (1993) Effects of rice bran hemicellulose on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in Fischer 344 rats. Nutr Cancer 20:41–49

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dasman, Kajiyama S, Kawasaki H, Yagi M, Seki T, Fukusaki E, Kobayashi A (2002) Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Finnegan PM, Brumbley SM, O’Shea MG, Nevalainen KM, Bergquist PL (2004) Paenibacillus isolates possess diverse dextran-degrading enzymes. J Appl Microbiol 97:477–485

    Article  PubMed  CAS  Google Scholar 

  • Ghoneum M (1998) Anti-HIV activity in vitro of MGN-3, an activated arabinoxylane from rice bran. Biochem Biophys Res Commun 243:25–29

    Article  PubMed  CAS  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20:177–211

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Candelas L, Ramon D, Polaina J (1990) Sequences and homology analysis of two genes encoding β-glucosidases from Bacillus polymyxa. Gene 95:31–38

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto W, Inose T, Nakajima H, Sato N, Kimura S, Murata K (1996) Purification and characterization of microbial gellan lyase. Appl Environ Microbiol 62:1475–1477

    PubMed  CAS  Google Scholar 

  • Hashimoto W, Miki H, Nankai H, Sato N, Kawai S, Murata K (1998) Molecular cloning of two genes for β-d-glucosidase in Bacillus sp. GL1 and identification of one as a gellan-degrading enzyme. Arch Biochem Biophys 360:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto W, Mishima Y, Miyake O, Nankai H, Momma K, Murata K (2002) Biodegradation of alginate, xanthan, and gellan. In: Steinbüchel A (ed) Biopolymers, vol. 7. Polysaccharides I, Wiley-VCH, Weinheim, pp 175–199

  • Hawley DK, McClure WR (1983) Comparison and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Article  PubMed  CAS  Google Scholar 

  • Hosoda A, Sakai M, Kanazawa S (2003) Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of spinach. Biosci Biotechnol Biochem 67:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Iqbal J, Minhajuddin M, Beg ZH (2003) Suppression of 7,12-dimethylbenz[α]anthracene-induced carcinogenesis and hypercholesterolaemia in rats by tocotrienol-rich fraction isolated from rice bran oil. Eur J Cancer Prev 12:447–453

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Tomita T, Roy N, Nakano A, Sugawara-Tomita N, Watanabe S, Okai N, Abe N, Kamio Y (2003) Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl Environ Microbiol 69:6969–6978

    Article  PubMed  CAS  Google Scholar 

  • Kaulpiboon J, Rimphanitchayakit V, Pongsawasdi P (2004) Identification of an alkaline-tolerant cyclodextrin-metabolizing bacterium and characterization of its cyclodextrinase gene. J Basic Microbiol 44:374–382

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Nam SH, Choi SP, Kang MY, Kozukue N, Friedman M (2005) Antioxidative, antimutagenic, and anticarcinogenic activities of rice bran extracts in chemical and cell assays. J Agric Food Chem 53:816–822

    Article  PubMed  CAS  Google Scholar 

  • Nankai H, Hashimoto W, Miki H, Kawai S, Murata K (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl. Environ Microbiol 65:2520–2526

    CAS  Google Scholar 

  • Onsøyen E (1996) Commercial applications of alginates. Carbohydr Eur 14:26–31

    Google Scholar 

  • Paavilainen S, Hellman J, Korpela T (1993) Purification, characterization, gene cloning, and sequencing of a new β-glucosidase from Bacillus circulans subsp. alkalophilus. Appl Environ Microbiol 59:927–932

    PubMed  CAS  Google Scholar 

  • Peitsch M (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem Soc Trans 24:274–279

    PubMed  CAS  Google Scholar 

  • Qureshi AA, Mo H, Packer L, Peterson DM. (2000) Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J Agric Food Chem 48:3130–3140

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Mateos PF, Martinez-Molina E, Velazquez E (2005) Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55:405–408

    Article  PubMed  CAS  Google Scholar 

  • Ruijssenaars HJ, de Bont JA, Hartmans S (1999) A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1. Appl Environ Microbiol 65:2446–2452

    PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama CC, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J (1998) Crystal structure of β-glucosidase A from Bacillus polymyxa: Insights into the catalytic activity in family 1 glycosyl hadrolases. J Mol Biol 275:491–502

    Article  PubMed  CAS  Google Scholar 

  • Saunders RM (1990) The properties of rice bran as a food stuff. Cer Foods Worlds 35:632–636

    Google Scholar 

  • Sheetharamaiah GS, Chabdrasekhara N (1988) Hypocholesterolemic activity of oryzanol in rats. Nutr Rep Int 38:927–935

    Google Scholar 

  • Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289

    Article  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3’ terminal sequence of E. coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Siegel SM (1968) In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, Elsevier, Amsterdam

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    PubMed  CAS  Google Scholar 

  • Sugano M, Tsuji E (1996) Rice bran oil and human health. Biomed Environ Sci 9:242–246

    PubMed  CAS  Google Scholar 

  • Takeda M, Iohara K, Shinmaru S, Suzuki I, Koizumi JI (2000) Purification and properties of an enzyme capable of degrading the sheath of Sphaerotilus natans. Appl Environ Microbiol 66:4998–5004

    Article  PubMed  CAS  Google Scholar 

  • van der Maarel MJ, Veen A, Wijbenga DJ (2000) Paenibacillus granivorans sp. nov., a new Paenibacillus species which degrades native potato starch granules. Syst Appl Microbiol 23:344–348

    PubMed  Google Scholar 

  • Wang S-L, Yen Y-H, Shih I-L, Chang AC, Chang W-T, Wu W-C, Chai Y-D (2003) Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb Technol 33:917–925

    Article  CAS  Google Scholar 

  • Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y, Kimura A, Murata K (1993) Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J Ferment Bioeng 75:68–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan to K.M. and W.H. and by the Program of Basic Research Activities for Innovative Biosciences (PROBRAIN) of Japan to K.M. A part of this work was also supported by the Iijima foundation of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousaku Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, K.M., Tanaka, K., Fukuda, Y. et al. Degradation of rice bran hemicellulose by Paenibacillus sp. strain HC1: gene cloning, characterization and function of β-D-glucosidase as an enzyme involved in degradation. Arch Microbiol 184, 215–224 (2005). https://doi.org/10.1007/s00203-005-0038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0038-8

Keywords

Navigation