Skip to main content
Log in

Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The genes that encode oxygen-insensitive nitroreductases from Clostridium acetobutylicum possessing 2,4,6-Trinitrotoluene (TNT) transformation activity were cloned, sequenced and characterized. The gene products NitA (MW 31 kDa) and NitB (MW 23 kDa) were purified to homogeneity. The NitA and NitB are oxygen-insensitive nitroreductases comprised of a single nitroreductase domain. NitA and NitB enzymes show spectral characteristics similar to flavoproteins. The biochemical characteristics of NitA and NitB are highly similar to those of NfsA, the major nitroreductase from E. coli. NitA exhibited broad specificity similar to that of E. coli NfsA and displayed no flavin reductase activity. NitB showed broad substrate specificity toward nitrocompounds in a pattern similar to NfsA and NfsB of Escherichia coli. NitB has high sequence similarity to NAD(P)H nitroreductase from Archaeoglobus fulgidus. NitA could utilize only NADH as an electron donor, whereas NitB utilized both NADH and NADPH as electron donors with a preference for NADH. The activity of both nitroreductases was high toward 2,4-Dinitrotoluene (2,4-DNT) as a substrate. Both the nitroreductases were inhibited by dicoumarol and salicyl hydroxamate. The nitroreductases showed higher relative expression on induction with TNT, nitrofurazone and nitrofurantoin compared to the uninduced control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Denaturing
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Anlezark GM, Melton RG, Sherwood RF, Coles B, Friedlos F, Knox RJ (1992) The bioactivation of a 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954)-I. Purification and properties of a nitroreductase enzyme from Echerichia coli-a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 44:2289–2295

    Article  PubMed  CAS  Google Scholar 

  • Angermaier L, Simon H (1983) On nitroaryl reductase activities in several Clostridia. Hoppe Seylers Z Physiol Chem 364:1653–1663

    Google Scholar 

  • Basran A, French CE, Williams RE, Nicklin S, Bruce NC (1998) Degradation of nitrate ester and nitroaromatic explosives by Enterobacter cloacae PB2. Biochem Soc Trans 26:680–685

    PubMed  CAS  Google Scholar 

  • Blehert DS, Fox BG, Chambliss GH (1999) Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 181:6254–6263

    PubMed  CAS  Google Scholar 

  • Boopathy R (1994) Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp.(strain B) Arch Microbiol 162:167–172

    Article  CAS  Google Scholar 

  • Boopathy R, Manning J, Montemagno C (1994) Metabolism of trinitrobenzene by a Pseudomonas consortium. Can J Microbiol 40:787–790

    Article  CAS  Google Scholar 

  • Boopathy R, Kulpa CF, Wilson M (1993) Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39:270–275

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125

    PubMed  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  • Fiorenza S, Dunston KL, Ward CH (1991) Decision making - is bioremediation a viable option. J Hazard Mater 28:171–283

    Article  CAS  Google Scholar 

  • Fiorella P, Spain J (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2201

    PubMed  CAS  Google Scholar 

  • Fox KM, Karplus PA (1994) Old yellow enzyme at 2 Å resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure 2:1089–1105

    Article  PubMed  CAS  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    PubMed  CAS  Google Scholar 

  • Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen PE, Breeuwer P, van Helvoort JM, Langenhoff AA, de Vries FP, de Bont JA (1992) Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol 138:1599–1605

    PubMed  CAS  Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnol (NY) 10:413–417

    Article  CAS  Google Scholar 

  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Wang CY, Bhadra R, Richardson A, Bennett GN, Rudolph F (1998) Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino intermediates. Environ Toxicol Chem 17:343–348

    Article  CAS  Google Scholar 

  • Johansson E, Parkinson GN, Denny WA, Neidle S (2003) Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form. J Med Chem 11:4009–4020

    Article  CAS  Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54

    Article  PubMed  CAS  Google Scholar 

  • Karplus AP, Fox KM, Massey V (1995) Structure-function relations for old yellow enzyme. FASEB J. 9:1518–1526

    PubMed  CAS  Google Scholar 

  • Khan TA, Bhadra R, Hughes JB (1997) Anaerobic transformation of 2,4,6-trinitrotoluene and related nitroaromatic compounds by Clostridium acetobutylicum. J Ind Microbiol Biotechnol 18:198–203

    Article  CAS  Google Scholar 

  • Kim HY, Song HG (2005) Purification and characterization of NAD(P)H-dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol Mar 24 [Epub ahead of print]

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000). Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 46:278–282

    Article  PubMed  CAS  Google Scholar 

  • Kobori T, Sasaki H, Lee WC, Zenno S, Saigo K, Murphy ME, Tanokura M (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem 276:2816–2823

    Article  PubMed  CAS  Google Scholar 

  • Kohli RM, Massey V (1998) The oxidative half-reaction of old yellow enzyme. J Biol Chem 273:32763–32770

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Sasaki H, Kobori T, Zenno S, Saigo K, Murphy ME, Adman ET, Tanokura M (1998) 1.8 Å crystal structure of the major NAD(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate-analog binding, and comparison with related flavoproteins. J Mol Biol 280:259–273

    Article  PubMed  CAS  Google Scholar 

  • Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton Fla, pp 91–126

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Liochev SI, Hausladen A, Fridovich I (1999) Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc Natl Acad Sci USA 96:3537–3539

    Article  PubMed  CAS  Google Scholar 

  • Matthews RG, Massey V, Sweeley CC (1975) Identification of p-hydroxybenzaldehyde as the ligand in the green form of old yellow enzyme. J Biol Chem 250:9294–9298

    PubMed  CAS  Google Scholar 

  • Noyes R (1996) Chemical weapons destruction and explosive waste/unexploded ordinance remediation. Noyes Publications, New Jersey, pp 102–141

    Google Scholar 

  • Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiology 59:2520–2525

    CAS  Google Scholar 

  • Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  PubMed  CAS  Google Scholar 

  • Padda RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297

    Article  PubMed  CAS  Google Scholar 

  • Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent Azo reductases. Appl Environ Microbiol 69:3448–3455

    Article  PubMed  CAS  Google Scholar 

  • Rafii F, Cerniglia CE (1993) Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl Environ Microbiol 59:1731–1734

    PubMed  CAS  Google Scholar 

  • Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. vol 49. Plenum, New York, pp 1–18

  • Schopfer LM, Massey V (1991) A study of enzymes, mechanisms of enzyme action. In: Kuby SA (ed) Old yellow enzyme. CRC, Boca Raton, pp 247–269

    Google Scholar 

  • Somerville CC, Nishino SF, Spain JC (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 177:3837–3842

    PubMed  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds Annu Rev Microbiol 49:523–555

    Article  PubMed  CAS  Google Scholar 

  • Spain JC, Hughes JB, Knackmuss HJ (ed) (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, pp 91–126

    Google Scholar 

  • Tan EL, Ho CH, Griest WH, Tyndall RL (1992) Mutagenicity of trinitrotoluene and its metabolites formed during composting. J Toxicol Environ Health 36:165–175

    Article  PubMed  CAS  Google Scholar 

  • Tanner JJ, Lei B, Tu SC, Krause KL (1996) Flavin reductase P: structure of a dimeric enzyme that reduces flavin. Biochemistry 35:13531–13539

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi K, Doi T, Yoshimura H, Koga H, Horiuchi T (1982) Oxygen-insensitive nitrofuran reductases in Salmonella typhimurium TA 100. J. Pharm Dyn 5:423–429

    CAS  Google Scholar 

  • Watrous MW, Clark S, Kutty R, Huang S, Rudolph FB, Hughes JB, Bennett GN (2003) 2,4,6-Trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl Environ Microbiol 69:1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31:576–580

    PubMed  CAS  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–357

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Wood TK, Smet BF (2005) Reductive transformation of TNT by Escherichia coli:pathway description. Appl Microbiol Biotechnol 67:397–404

    Article  PubMed  CAS  Google Scholar 

  • Zenno ST, Kobori T, Tanokura M, Saigo K (1998) Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution. J Bacteriol 180:422–425

    PubMed  CAS  Google Scholar 

  • Zenno S, Koike H, Kumar AN, Jayaraman R, Tanokura M, Saigo K (1996a) Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 178:4508–4514

    PubMed  CAS  Google Scholar 

  • Zenno S, Koike H, Tanokura M, Saigo K (1996b) Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri. J Biochem (Tokyo) 120:736–744

    CAS  Google Scholar 

  • Zenno S, Koike H, Tanokura M, Saigo K (1996c) Conversion of NfsB, a minor Escherichia coli nitroreductase, to a flavin reductase similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri, by a single amino acid substitution. J Bacteriol 178:4731–4733

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the U.S. Army Research Office DOD ARMY W911NF-04-1-0179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, R., Bennett, G.N. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Arch Microbiol 184, 158–167 (2005). https://doi.org/10.1007/s00203-005-0036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0036-x

Keywords

Navigation