Archives of Microbiology

, Volume 184, Issue 5, pp 259–270 | Cite as

The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803

  • Allison M.L. van de Meene
  • Martin F. Hohmann-Marriott
  • Wim F.J. Vermaas
  • Robert W. RobersonEmail author
Original Paper


To advance our knowledge of the model cyanobacterium Synechocystis sp. PCC 6803 we investigated the three-dimensional organization of the cytoplasm using standard transmission electron microscopy and electron tomography. Electron tomography allows a resolution of ~5 nm in all three dimensions, superior to the resolution of most traditional electron microscopy, which is often limited in part by the thickness of the section (70 nm). The thylakoid membrane pairs formed layered sheets that followed the periphery of the cell and converged at various sites near the cytoplasmic membrane. At some of these sites, the margins of thylakoid membranes associated closely along the external surface of rod-like structures termed thylakoid centers, which sometimes traversed nearly the entire periphery of the cell. The thylakoid membranes surrounded the central cytoplasm that contained inclusions such as ribosomes and carboxysomes. Lipid bodies were dispersed throughout the peripheral cytoplasm and often juxtaposed with cytoplasmic and thylakoid membranes suggesting involvement in thylakoid maintenance or biogenesis. Ribosomes were numerous and mainly located throughout the central cytoplasm with some associated with thylakoid and cytoplasmic membranes. Some ribosomes were attached along internal unit-membrane-like sheets located in the central cytoplasm and appeared to be continuous with existing thylakoid membranes. These results present a detailed analysis of the structure of Synechocystis sp. PCC 6803 using high-resolution bioimaging techniques and will allow future evaluation and comparison with gene-deletion mutants.


Electron tomography Field-emission cryo-scanning electron microscopy Serial section reconstruction Transmission electron microscopy Thylakoid membrane biogenesis Cyanobacteria 



High voltage electron microscopy


Intermediate voltage electron microscope




Field-emission scanning electron microscopy


Transmission electron microscopy



This research was supported by the U.S. Department of Energy GTL: Genomics Project, # DE-FG03–01ER15251 (WV, RWR). Electron tomography was performed at the facilities of the Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado, Boulder, CO. The authors wish to thank Drs. Eileen O’Toole and David Mastronarde of the Boulder Laboratory for help and guidance with tomography software. Work done in the Boulder Lab was supported by a grant from the National Institutes of Health (RR-00592, J.R. McIntosh, principal investigator). Electron microscopy at ASU was carried out in the Life Sciences Electron Microscopy Facility (TEM) and the Center for Solid State Sciences (cryo-SEM; NSF MRI Grant CTS-0216530). We thank Dr. Ken Hoober (ASU) for engaging in thoughtful discussions and for helpful suggestions and Dr. Dmitrii Vavilin (ASU) for Russian to English translations.

Supplementary material


  1. Allen MM (1968) Photosynthetic membrane system in Anacystis nidulans. J Bacteriol 96:836–841PubMedGoogle Scholar
  2. Asato Y, Ginoza HS (1973) Separation of small circular DNA molecules from blue green alga Anacystis nidulans. Nat New Biol 244:132–133PubMedCrossRefGoogle Scholar
  3. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684PubMedCrossRefGoogle Scholar
  4. Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM, Cohen-Bazire G (1979) Structure of cyanobacterial phycobilisomes—model. Arch Microbiol 123:113–127CrossRefGoogle Scholar
  5. Carde JP, Joyard J, Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44:315–324Google Scholar
  6. Cassel WA, Hutchinson WG (1954) Nuclear studies on the smaller Myxophyceae. Exp Cell Res 6:134–150CrossRefPubMedGoogle Scholar
  7. Chua NH, Blobel G, Siekevitz P, Palade GE (1973) Attachment of chloroplast polysomes to thylakoid membranes in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 70:1554–1558PubMedCrossRefGoogle Scholar
  8. Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure—theory and practice. J Elec Micros Tech 13:165–174CrossRefGoogle Scholar
  9. Douce R, Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer, Boston, pp 69–101Google Scholar
  10. Edwards MR, Berns DS, Ghiorse WC, Holt SC (1968) Ultrastructure of thermophilic blue green alga Synechococcus lividus Copeland. J Phycol 4:283–298CrossRefGoogle Scholar
  11. Edwards MR, Gantt E (1971) Phycobilisomes of thermophilic blue green alga Synechococcus lividus. J Cell Biol 50:896–900CrossRefPubMedGoogle Scholar
  12. Erlandsen SL, Ottenwaelter C, Frethem C, Chen Y (2001) Cryo field emission scanning electron microscopy. BioTech 31:300–305Google Scholar
  13. Falk H (1969) Rough thylakoids—polysomes attached to chloroplast membranes. J Cell Biol 42:582–587CrossRefPubMedGoogle Scholar
  14. Frank J (1992) Electron tomography. Plenum Press, New YorkGoogle Scholar
  15. Frank J, Wagenknecht T, McEwen BF, Marko M, Hsieh C-E, Mannella C (2002) Three-dimensional imaging of biological complexity. J Struct Biol 138:85–91CrossRefPubMedGoogle Scholar
  16. Fraser CM, Eisen JA, Salzberg SL (2000) Microbial genome sequencing. Nature 406:799–803CrossRefPubMedGoogle Scholar
  17. Fuhs GW (1963) Cytochemisch-elektronenmikroskopische Lokalisierung der Ribonukleinsäure und des Assimilats in Cyanophyceen. Protoplasma 56:178–187CrossRefGoogle Scholar
  18. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493PubMedGoogle Scholar
  19. Giddings TH (2003) Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212:53–61CrossRefPubMedMathSciNetGoogle Scholar
  20. Gromov BV, Mamkaeva KA (1976) Connection of thylakoids with plasmalemma in cyanobacteria of genus Synechococcus. Microbiol 45:790–791Google Scholar
  21. Hinterstoisser B, Cichna M, Kuntner O, Peschek GA (1993) Cooperation of plasma and thylakoid membranes for the biosynthesis of chlorophyll in cyanobacteria: the role of thylakoid centers. J Plant Physiol 142:407–413Google Scholar
  22. Jagendorf AT, Michaels A (1990) Rough thylakoids—translation on photosynthetic membranes. Plant Sci 71:137–145CrossRefGoogle Scholar
  23. Jensen TE (1968) Electron microscopy of polyphosphate bodies in a blue green alga Nostoc pruniforme. Arch Mikrobiol 62:144–152CrossRefGoogle Scholar
  24. Jensen TE (1984) Cyanobacterial cell inclusions of irregular occurrence: systematic and evolutionary implications. Cytobios 39:35–62Google Scholar
  25. Jensen TE (1985) Cell inclusions in the Cyanobacteria. Arch Hydrobiol Suppl Bd 71:33–73Google Scholar
  26. Jensen TE, Bowen CC (1961) Organization of the centroplasm in Nostoc pruniforme. Proc Iowa Acad Sci 68:86–89Google Scholar
  27. Jensen TE, Sicko LM (1971) Fine structure of poly-β-hydroxybutyric acid granules in a blue-green alga, Chlorogloea fritschii. J Bacteriol 106:683–686PubMedGoogle Scholar
  28. Jost M (1965) Die Ultrastruktur von Oscillatoria rubescens D C. Arch Mikrobiol 50:211–245CrossRefGoogle Scholar
  29. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136Google Scholar
  30. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  31. Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99CrossRefGoogle Scholar
  32. Ladinsky MS, Kremer JR, Furcinitti PS, McIntosh JR, Howell KE (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J Cell Biol 127:29–38CrossRefPubMedGoogle Scholar
  33. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149CrossRefPubMedGoogle Scholar
  34. Lancelle SA, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165CrossRefGoogle Scholar
  35. Lang NJ (1968) The fine structure of blue-green algae. Ann Rev Microbiol 22:15–46CrossRefGoogle Scholar
  36. Leak LV (1965) Electron microscopic autoradiography incorporation of H3-thymidine in a blue green alga Anabaena sp. J Ultrastruct Res 12:135–146CrossRefPubMedGoogle Scholar
  37. Leak LV (1967) Studies on preservation and organization of DNA containing regions in a blue green alga: a cytochemical and ultrastructural study. J Ultrastruct Res 20:190–205CrossRefPubMedGoogle Scholar
  38. Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high-resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406CrossRefPubMedGoogle Scholar
  39. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352CrossRefPubMedGoogle Scholar
  40. McDonald K, Morphew MK (1993) Improved preservation of ultrastructure in difficult to fix organisms by high pressure freezing and freeze substitution. 1. Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Micros Res Tech 24:465–473CrossRefGoogle Scholar
  41. McEwen BF, Frank J (2001) Electron tomographic and other approaches for imaging molecular machines. Curr Opin Neurobiol 11:594–600CrossRefPubMedGoogle Scholar
  42. McIntosh JR (2001) Electron microscopy of cells: a new beginning for a new century. J Cell Biol 153:F25–F32CrossRefPubMedGoogle Scholar
  43. McIntosh JR, Nicastro D, Mastronarde DN (2005) New views of cells in 3D: an introduction to electron tomography. Trends in Cell Biol 15:43–51CrossRefGoogle Scholar
  44. Mims CW, Roberson RW, Richardson EA (1988) Ultrastructure of freeze-substituted and chemically fixed basidiospores of Gymnosporangium juniperi-virginianae. Mycologia 80:356–364CrossRefGoogle Scholar
  45. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345CrossRefPubMedGoogle Scholar
  46. Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391CrossRefPubMedGoogle Scholar
  47. Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) 3-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722CrossRefPubMedGoogle Scholar
  48. Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1984) The use of high-voltage electron microscopy and semi-thick sections for examination of cyanobacterial thylakoid membrane arrangements. J Microsc 133:55–60Google Scholar
  49. O’Toole ET, Giddings TH, McIntosh JR, Dutcher SK (2003) Three-dimensional organization of basal bodies from wild-type and gamma-tubulin deletion strains of Chlamydomonas reinhardtii. Mol Biol Cell 14:2999–3012CrossRefPubMedGoogle Scholar
  50. O’Toole ET, Winey M, McIntosh JR (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10:2017–2031PubMedGoogle Scholar
  51. Pankratz HS, Bowen CC (1963) Cytology of blue-green algae. I. The cells of Symploca muscorum. Am J Bot 50:387–399CrossRefGoogle Scholar
  52. Peat A, Whitton BA (1968) Vegetative cell structure in Anabaenopsis sp. Arch Mikrobiol 63:170–176CrossRefGoogle Scholar
  53. Philippovich II, Bezsmertanya IN, Oparin AI (1973) On the localization of polyribosomes in the system of chloroplast lamellae. Exp Cell Res 79:159–168CrossRefPubMedGoogle Scholar
  54. Philippovich II, Tongur AM, Alina BA, Oparin AI (1970) Localization and conformation of polyribosomes bound to chloroplast lamellae. Exp Cell Res 62:399–406CrossRefPubMedGoogle Scholar
  55. Pinevich AV (1997) Intracytoplasmic membrane structures in bacteria. Endocyt Cell Res 12:9–40Google Scholar
  56. Rawyler A, Meylan-Bettex M, Siegenthaler PA (1995) (Galacto)lipid export from envelope to thylakoid membranes in intact chloroplasts. 2. A general process with a key role for the envelope in the establishment of lipid asymmetry in thylakoid membranes. Biochim Biophys Acta 1233:123–133PubMedCrossRefGoogle Scholar
  57. Reynolds ES (1963) Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  58. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  59. Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80PubMedCrossRefGoogle Scholar
  60. Roberts TM, Koths KE (1976) Blue green alga Agmenellum quadruplicatum contains covalently closed DNA circles. Cell 9:551–557CrossRefPubMedGoogle Scholar
  61. Robinson C, Woolhead C, Edwards W (2000) Transport of proteins into and across the thylakoid membrane. J Exp Bot 51:369–374CrossRefPubMedGoogle Scholar
  62. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  63. Staehelin LA (1986) Chloroplasts structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA, Arntzen CJ (eds) Photosynthesis III photosynthetic membranes and light harvesting systems. Springer-Verlag, New York, pp 1–84Google Scholar
  64. Stanier G (1988) Fine structure of cyanobacteria. Meth Enzymol 167:157–242CrossRefGoogle Scholar
  65. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes—cyanobacteria. Ann Rev Microbiol 31:225–274CrossRefGoogle Scholar
  66. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512CrossRefPubMedGoogle Scholar
  67. Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bact Rev 37:32–101PubMedGoogle Scholar
  68. Wollman FA, Minai L, Nechushtai R (1999) The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim Biophys Acta 1411:21–85PubMedCrossRefGoogle Scholar
  69. Zheng HQ, Staehelin LA (2001) Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol 125:252–265CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Allison M.L. van de Meene
    • 1
  • Martin F. Hohmann-Marriott
    • 1
  • Wim F.J. Vermaas
    • 1
  • Robert W. Roberson
    • 1
    Email author
  1. 1.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations