Skip to main content
Log in

Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of dipropyl phthalate (DPrP) was investigated. The DPrP-degradation rate of fungal cutinase was surprisingly high, i.e., almost 70% of the initial DPrP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DPrP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 90% of the DPrP remained even after 3 days of treatment. During the enzymatic degradation of DPrP, several DPrP-derived compounds were detected and time-course changes in composition were also monitored. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with fungal cutinase, most DPrP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by yeast esterase, propyl methyl phthalate (PrMP) was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including PrMP) from yeast esterase severely caused oxidative stress and damage to protein synthesis in bacterial cells, while in the fungal cutinase processes, DPrP was significantly degraded to non-toxic IBF after the extended period (3 days).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belkin S, Smulski DR, Vollmer AC, Van Dyk TK, LaRossa RA (1996) Oxidative stress detection with Escherichia coli harboring a katG’::lux fusion. Appl Environ Microbiol 62:2252–2256

    PubMed  CAS  Google Scholar 

  • Cartwright CD, Owen SA, Thompson IP, Burns RG (2000) Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiol Lett 18:27–34

    Article  Google Scholar 

  • Carvalho CM, Aires-Barros MR, Cabral JM (1999) Cutinase from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  PubMed  CAS  Google Scholar 

  • Chang BV, Yang CM, Cheng CH, Yuan SY (2004) Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55:533–538

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309:36–43

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Gu MB (2001) Phenolic toxicity-detection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ Toxicol Chem 20:248–255

    Article  PubMed  CAS  Google Scholar 

  • Dantzig AH, Zuckerman SH, Andonov-Roland MM (1986) Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence. J Bacteriol 168:911–916

    PubMed  CAS  Google Scholar 

  • Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter:lux fusions for genotoxicity detection. Mutat Res 466:97–107

    PubMed  CAS  Google Scholar 

  • Flipsen J, Appel A, Van der Hijden H, Verrips C (1998) Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzyme Microb Technol 23:274–280

    Article  CAS  Google Scholar 

  • Gascon J, Qubina A, Barcelo D (1997) Detection of endocrinedisrupting pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trends Anal Chem 16:554–562

    Article  CAS  Google Scholar 

  • Gerard HC, Fett WF, Osman SF, Moreau RA (1993) Evaluation of cutinase activity of various industrial lipases. Biotechnol Appl Biochem 17:181–189

    CAS  Google Scholar 

  • Gu MB, Min J, Kim EJ (2002) Toxicity monitoring and classification of endocrine-disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46:289–294

    Article  PubMed  CAS  Google Scholar 

  • Harris C, Henttu P, Parker M, Sumpter J (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105:802–811

    Article  PubMed  CAS  Google Scholar 

  • Heindel JJ, Powell CJ (1992) Phthalate ester effects on rat Sertoli cell function in vitro. Toxicol Appl Pharmacol 115:116–123

    Article  PubMed  CAS  Google Scholar 

  • Heindel JJ, Gulati DK, Mounce RC, Russell SR, Lamb JC (1989) Reproductive toxicity of three phthalic acid esters in a continuous breeding protocol. Fundam Appl Toxicol 12:508–518

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee J, Moon SH (2003) Uniqueness of microbial cutinase in hydrolysis of p-nitrophenyl esters. J Microbiol Biotechnol 13:57–63

    CAS  Google Scholar 

  • Kim YH, Ahn JY, Moon SH, Lee J (2005) Biodegradation and detoxification of organophosphate insectcide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere (in press)

  • Kolattukudy PE (1984) Cutinase from fungi and pollen. In: Borgstrom B, Brockman T (eds) Lipases. Elsevier, Amsterdam, pp 471–504

    Google Scholar 

  • Kolattukudy PE, Purdy RE, Maiti IB (1981) Cutinase from fungi and pollen. In: Lowenstein JM (eds) Methods in enzymology, vol 71. Academic, New York, pp 652–664

  • Lovekamp-Swan T, Davis BJ (2003) Mechanisms of Phthalate Ester Toxicity in the Female Reproductive System. Environ Health Perspect 111:139–145

    Article  PubMed  CAS  Google Scholar 

  • Min J, Kim EJ, LaRossa RA, Gu MB (1999) Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat Res 442:61–68

    PubMed  CAS  Google Scholar 

  • Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460

    PubMed  CAS  Google Scholar 

  • Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1998) A second polycaprolactone depolymerase from Fusarium, a lipase distant from cutinase. Appl Microbiol Biotechnol 50:692–696

    Article  CAS  Google Scholar 

  • Niazi JH, Prasad DT, Karegoudar TB (2001) Initial degradation of dimethylphthalate by esterases from Bacillusspecies. FEMS Microbiol Lett 96:201–205

    Article  Google Scholar 

  • Nunoshiba T, Nishioka H (1991) Rec-lac test for detecting SOS inducing activity of environmental genotoxic substances. Mutat Res 254:71–77

    PubMed  CAS  Google Scholar 

  • Okkels JS, Svendsen A, Borch K , Thellersen M, Patkar SA, Petersen DA, Royer JC, Kretzschmar T (1997) New lypolytic enzymes with high capacity to remove lard in one wash cycle. US patent 97–05735

  • Page BD, Lacroix GM (1992) Studies into the transfer and migration of phthalate esters from aluminium foil-paper laminates to butter and margarine. Food Addit Contam 9:197–212

    PubMed  CAS  Google Scholar 

  • Ptitsyn LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4384

    PubMed  CAS  Google Scholar 

  • Purdy RE, Kolattukudy PE (1975) Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solanif. pisi. Biochemistry 14:2824–2831

    Article  PubMed  CAS  Google Scholar 

  • Sagt CMJ, Muller WH, Boonstra J, Verkleij AJ, Verrips CT (1998) Impaired secretion of a hydrophobic cutinase by Saccharomyces cerevisiae correlates with an incerased association with immunoglobulin heavy-chain binding protein (BiP). Appl Environ Microbiol 64:316–324

    PubMed  CAS  Google Scholar 

  • Sebastian J, Chandra AK, Kolattukudy PE (1987) Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in phyllosphere. J Bacteriol 169:131–136

    PubMed  CAS  Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  PubMed  CAS  Google Scholar 

  • Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat Toxicol 64:25–37

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Yaguchi K, Suzuki S, Suga T (2001) Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC-MS determination. Environ Sci Technol 18:3757–3763

    Article  CAS  Google Scholar 

  • Unilever (1994) Enzyme-containing surfactant compositions. US patent 94–04771

  • Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420

    PubMed  Google Scholar 

  • Van Dyk TK, Smulski DR, Reed TR, Belkin S, Vollmer AC, LaRossa RA (1995) Responses to toxicants of an Escherichia coli strain carrying a uspA’::lux genetic fusion and an E. coli strain carrying a grpE’::lux fusion are similar. Appl Environ Microbiol 61:4124–4127

    PubMed  CAS  Google Scholar 

  • Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli Carrying recA::lux, uvrA::lux, or alkA::lux reporter plasmids. Appl Environ Microbiol 63:2566–2571

    PubMed  CAS  Google Scholar 

  • Yuan SY, Liao CS, Liu C, Chang BV (2002) The occurrence and microbial degradation of phthalate esters of aquatic environmental in Taiwan. Chemosphere 49:1295–1299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We deeply thank Seung-Hyeon Moon at Gwangju Institute of Science and Technology for the GC/MS analysis used in this study. We are also grateful to Prof. C.M.J. Sagt in Utrecht University (Utrecht, Netherlands) for kindly providing the purified cutinase from F. oxysporum f. sp. pisi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeewon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Min, J., Bae, KD. et al. Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch Microbiol 184, 25–31 (2005). https://doi.org/10.1007/s00203-005-0026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0026-z

Keywords

Navigation