Skip to main content
Log in

The puf operon of the purple sulfur bacterium Amoebobacter purpureus: structure, transcription and phylogenetic analysis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The puf operon, encoding photosynthetic reaction center and light-harvesting genes, of the purple sulfur phototrophic bacterium Amoebobacter purpureus was cloned and sequenced. This revealed an unusual operon structure of the genes pufB 1 A 1 LMCB 2 A 2 B 3 A 3. The sequence represents the second complete puf operon available for Chromatiaceae. So far, additional sets of light-harvesting 1 (LH1) genes, pufB 2 A 2 and pufB 3 A 3 in the region downstream of pufC have only been described for Allochromatium vinosum. Along with reports of multiple LH1 polypeptides found in some Ectothiorhodospiraceae by direct protein sequencing, our results indicate that multiple LH1 genes may occur frequently in phototrophic γ-proteobacteria. Phylogenetic analyses suggested a coevolution of the core puf genes pufB 1 A 1 LM. Separate analysis of the LH1 α and β polypeptides revealed a high intraspecies relatedness for the secondary LH1β polypeptides, possibly caused by functional constraints. In contrast, LH1α subunits of Amb. purpureus and Alc. vinosum are closely related (85% sequence identity) which could reflect horizontal gene transfer. RNA analyses suggested co-transcription of all puf genes in Amb. purpureus as a 5.5 kb primary transcript which appears to be more stable than the puf operon primary transcripts of purple non-sulfur bacteria. The 5′ end of the transcript mapped to a putative promoter, which contains a −35 region located in an inverted repeat DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aa :

Amino acids

Alc.:

Allochromatium

BChl :

Bacteriochlorophyll

Ect.:

Ectothiorhodospira

EDTA :

Ethylendiamine tetraacetic acid

LH :

Light harvesting complex

RC :

Reaction center

Rba.:

Rhodobacter

Rps.:

Rhodopseudomonas

Rsp.:

Rhodospirillum

MOPS :

3-(N-morpholino)propanesulfonic acid

orf :

Open reading frame

Tch.:

Thermochromatium

References

  • Adams CW, Forrest ME, Cohen SN, Beatty JT (1989) Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol 171:473–482

    PubMed  CAS  Google Scholar 

  • Aklujkar M, Harmer AL, Prince RC, Beatty JT (2000) The orf162b sequence of Rhodobacter capsulatus encodes a protein required for optimal levels of photosynthetic pigment-protein complexes. J Bacteriol 182:5440–5447

    Article  PubMed  CAS  Google Scholar 

  • Alberti M, Burke DH, Hearst JE (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1083–1106

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bauer C, Young D, Marrs B (1988) Analysis of the Rhodobacter capsulatus puf operon. Location of the oxygen-regulated promoter region and the identification of an additional puf-encoded gene. J Biol Chem 263:4820–4827

    PubMed  CAS  Google Scholar 

  • Beatty JT (1995) Organization of photosynthesis gene transcripts. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1209–1219

    Google Scholar 

  • Beja O et al (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  PubMed  CAS  Google Scholar 

  • Belanger G, Gingras G (1988) Structure and expression of the puf operon messenger-RNA in Rhodospirillum rubrum. J Biol Chem 263:7639–7645

    PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucleic Acids Res 30:17–20

    Article  PubMed  CAS  Google Scholar 

  • Bissig I, Wagner-Huber R, Brunisholz RA, Zuber H (1990) Multiple antenna complexes in various purple photosynthetic bacteria. In: Drews G, Dawes EA (eds) Molecular biology of membrane-bound complexes in phototrophic bacteria. Plenum Press, New York and London, pp 199–210

    Google Scholar 

  • Broveak T (1996) GeneWorks. Biotechnology Software Internet Journal 13:11–14

    Google Scholar 

  • Brunisholz RA, Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. Journal of Photochem Photobiol B (Biology) 15:113–140

    Article  CAS  Google Scholar 

  • Chen CYA, Beatty JT, Cohen SN, Belasco JG (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52:609–619

    Article  PubMed  CAS  Google Scholar 

  • Corson GE, Nagashima KVP, Matsuura K, Sakuragi Y, Wettasinghe R, Qin H, Allen R, Knaff DB (1999) Genes encoding light-harvesting and reaction center proteins from Chromatium vinosum. Photosynth Res 59:39–52

    Article  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1979) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring Maryland USA, pp 345–352

    Google Scholar 

  • Douglas SE (1995) DNA Strider - an inexpensive sequence-analysis package for the Macintosh. Mol Biotechnol 3:37–45

    PubMed  CAS  Google Scholar 

  • Drews G (1996) Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria. Arch Microbiol 166:151–159

    Article  PubMed  CAS  Google Scholar 

  • Drews G, Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 231–257

    Google Scholar 

  • Fathir I et al (1997) The genes coding for the L, M and cytochrome subunits of the photosynthetic reaction center from the thermophilic purple sulfur bacterium Chromatium tepidum. Photosynth Res 51:71–82

    Article  CAS  Google Scholar 

  • Fathir I et al (1998) Biochemical and spectral characterization of the core light harvesting complex 1 (LH1) from the thermophilic purple sulfur bacterium Chromatium tepidum. Photosynth Res 58:193–202

    Article  CAS  Google Scholar 

  • Felsenstein J (2002) PHYLIP, Phylogeny Inference Package, Version 3.6(alpha3). In. http://evolution.genetics.washington.edu/phylip.html, Department of Genome Sciences, University of Washington, Seattle, WA USA

  • Fidai S, Dahl JA, Richards WR (1995) Effect of the PufQ protein on early steps in the pathway of bacteriochlorophyll biosynthesis in Rhodobacter capsulatus. FEBS Lett 372:264–268

    Article  PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Zischka H, Venturoli G, Oesterhelt D (2002) Role of the N- and C-terminal regions of the PufX protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides. European J Biochem 269:1877–1885

    Article  CAS  Google Scholar 

  • Giraud E, Hannibal L, Fardoux L, Vermeglio A, Dreyfus B (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci USA 97:14795–14800

    Article  PubMed  CAS  Google Scholar 

  • Hartigan N, Tharia HA, Sweeney F, Lawless AM, Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophysical J 82:963–977

    CAS  Google Scholar 

  • Hu XC, Damjanovic A, Ritz T, Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci 95:5935–5941

    Article  PubMed  CAS  Google Scholar 

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341

    PubMed  CAS  Google Scholar 

  • Klug G (1993) The role of messenger-RNA degradation in the regulated expression of bacterial photosynthesis genes. Mol Microbiol 9:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CRD, Ermler U, Michel H (1995) The Structures of photosynthetic reaction centers from purple bacteria as revealed by X-ray crystallography. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 503–526

    Google Scholar 

  • Loach PA, Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 437–471

    Google Scholar 

  • Madigan MT, Martinko JM, Parker JA (2000) Brock Biology of Microorganisms, 9th edn. Prentice Hall International Inc., Upper Saddle River NJ

    Google Scholar 

  • Masuda S, Yoshida M, Nagashima KVP, Shimada K, Matsuura K (1999) A new cytochrome subunit bound to the photosynthetic reaction center in the purple bacterium, Rhodovulum sulfidophilum. J Biol Chem 274:10795–10801

    Article  PubMed  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ, Isaacs NW (2001) The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Meryandini A, Drews G (1996) Import and assembly of the alpha and beta-polypeptides of the light-harvesting complex I (B870) in the membrane system of Rhodobacter capsulatus investigated in an in vitro translation system. Photosynth Res 47:21–31

    Article  CAS  Google Scholar 

  • Nagashima KVP, Shimada K, Matsuura K (1993) Phylogenetic analysis of photosynthetic genes of Rhodocyclus gelatinosus: possibility of horizontal gene transfer in purple bacteria. Photosynthesis Res 36:185–191

    Article  CAS  Google Scholar 

  • Nagashima KVP, Matsuura K, Shimada K (1996) The nucleotide sequence of the puf operon from the purple photosynthetic bacterium, Rhodospirillum molischianum: comparative analyses of light-harvesting proteins and the cytochrome subunits associated with the reaction centers. Photosynthesis Res 50:61–70

    Article  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997a) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45:131–136

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Matsuura K, Wakao N, Hiraishi A, Shimada K (1997b) Nucleotide sequences of genes coding for photosynthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria. Plant Cell Physiol 38:1249–1258

    PubMed  CAS  Google Scholar 

  • Nagashima S, Shimada K, Matsuura K, Nagashima KVP (2002) Transcription of three sets of genes coding for the core light- harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum. Photosynthesis Res 74:269–280

    Article  CAS  Google Scholar 

  • Naylor GW, Addlesee HA, Gibson LCD, Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynthesis Res 62:121–139

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HBJ (1997) GeneDoc: analysis and visualization of genetic variation. http://www.psc.edu/biomed/genedoc

  • Nitschke W, Dracheva SM (1995) Reaction center associated cytochromes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 775–805

    Google Scholar 

  • Ochman H, Ayala FJ, Hartl DL (1993) Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Meth Enzymol 218:309–321

    Article  PubMed  CAS  Google Scholar 

  • Overmann J (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria. In: Advances in microbial ecology, vol 15. Plenum Press Div Plenum Publishing Corp, New York, pp 251–288

  • Overmann J, Pfennig N (1992) Continuous chemotropic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158:59–67

    Article  CAS  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859

    Article  CAS  Google Scholar 

  • Papiz MZ et al (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1:198–206

    Article  Google Scholar 

  • Parkes-Loach PS et al (2001) Role of the core region of the PufX protein in inhibition of reconstitution of the core light-harvesting complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. Biochemistry 40:5593–5601

    Article  PubMed  CAS  Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta, Bioenergetics 1366:301–316

    Article  PubMed  CAS  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-Genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Rosen KM, Lamperti ED, Villakomaroff L (1990) Optimizing the Northern blot procedure. Biotechniques 8:398

    PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Swem LR et al (2001) The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol 309:121–138

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 49–85

    Google Scholar 

  • Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F, Zuber H (1992) The primary structure of the antenna polypeptides of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. Four core-type antenna polypeptides in E. halochloris and E. halophila. Eur J of Biochem 205:917–925

    Article  CAS  Google Scholar 

  • Wiessner C, Dunger I, Michel H (1990) Structure and transcription of the genes encoding the B1015 light-harvesting complex b and a subunits and the photosynthetic reaction center L, M and cytochrome c subunit from Rhodopseudomonas viridris. J Bacteriology 172:2877–2887

    CAS  Google Scholar 

  • Zuber H, Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 627–703

    Google Scholar 

  • Zuber H, Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 315–348

    Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC (eds) RNA Biochemistry and Biotechnology. Kluwer Academic Publishers, Dordrecht, pp 11–43

    Google Scholar 

Download references

Acknowledgements

This investigation was supported by NSERC grants to J. T. Beatty, and scholarships of the German academic exchange service (DAAD) and the Heinz Neumüller Stiftung to Christian Tuschak. For Rhodopseudomonas palustris preliminary sequence data were obtained from the DOE Joint Genome Institute (JGI) at http://www.jgi.doe.gov/JGI_microbial/html/index.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Overmann.

Additional information

Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 80th birthday.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuschak, C., Leung, M.M., Beatty, J.T. et al. The puf operon of the purple sulfur bacterium Amoebobacter purpureus: structure, transcription and phylogenetic analysis. Arch Microbiol 183, 431–443 (2005). https://doi.org/10.1007/s00203-005-0016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0016-1

Keywords

Navigation