Skip to main content
Log in

A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanococcus maripaludis possesses two sets of F420-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3′ non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3′ non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3′ non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Halboth S, Klein A (1992) Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor-F420-reducing or F420-non-reducing types. Mol Gen Genet 233:217–224

    CAS  PubMed  Google Scholar 

  • Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    CAS  PubMed  Google Scholar 

  • Jones JB, Dilworth GL, Stadtman TC (1979) Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch Biochem Biophys 195:255–260

    CAS  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543

    CAS  PubMed  Google Scholar 

  • Lee JC, Cannone JJ, Gutell RR (2003) The lonepair triloop: a new motif in RNA. J Mol Biol 325:65–83

    CAS  PubMed  Google Scholar 

  • Leinfelder W, Zehelein E, Mandrand-Berthelot M-A, Böck A (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331:723–725

    CAS  PubMed  Google Scholar 

  • Müller E, Klein A (2001) Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae. Mol Genet Genomics 265:1069–1075

    Article  PubMed  Google Scholar 

  • Rother M, Resch A, Gardner WL, Whitman WB, Böck A (2001b) Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3′ non-translated region. Mol Microbiol 40:900–908

    CAS  PubMed  Google Scholar 

  • Rother M, Resch A, Wilting R, Böck A (2001a) Selenoprotein synthesis in archaea. Biofactors 14:53–59

    PubMed  Google Scholar 

  • Rother M, Mathes I, Lottspeich F, Böck A (2003) Inactivation of the selB gene in Methanococcus maripaludis: effect on synthesis of selenoproteins and their sulphur-containing homologues. J Bacteriol 185:107–114

    CAS  PubMed  Google Scholar 

  • Sorgenfrei O, Müller S, Pfeiffer M, Sniezko I, Klein A (1997) The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation. Arch Microbiol 167:189–195

    CAS  PubMed  Google Scholar 

  • Sun J, Klein A (2004) A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 52:563–571

    CAS  PubMed  Google Scholar 

  • Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ (2000) Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep 1:158–163

    CAS  PubMed  Google Scholar 

  • Wilting R, Schorling S, Persson BC, Böck A (1997) Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol 266:637–641

    CAS  PubMed  Google Scholar 

  • Wong JT (1988) Evolution of the genetic code. Microbiol Sci 5:174–181

    CAS  PubMed  Google Scholar 

  • Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J Biol Chem 257:7926–7929

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August Böck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böck, A., Rother, M. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue. Arch Microbiol 183, 148–150 (2005). https://doi.org/10.1007/s00203-004-0744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0744-7

Keywords

Navigation