Skip to main content
Log in

Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker JA, Entsch B, McKay DB (2003) The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiol Lett 229:43–47

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Foster RA (2002) Marine cyanobacterial symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 11–19

    Google Scholar 

  • Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 28:85–91

    Article  CAS  Google Scholar 

  • Costa JL, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396

    Article  CAS  PubMed  Google Scholar 

  • Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52:477–487

    PubMed  Google Scholar 

  • Enderlin CS, Meeks JC (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158:157–165

    CAS  Google Scholar 

  • Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348

    Article  Google Scholar 

  • Guevara R, Armesto JJ, Caru M (2002) Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting. Microb Ecol 44:127–136

    Article  CAS  PubMed  Google Scholar 

  • Gugger M, Lyra C, Henriksen P, Coutė A, Humbert JF, Sivonen K (2002) Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 52:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001a) MRBAYES: bayesian inference of phylogenetic trees. Biometrics 17:754–755

    CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001b) MrBayes: a program for the Bayesian inference of phylogeny, version 2.01. Computer Program distributed by the authors

  • Janson S (2002) Cyanobacteria in symbiosis with diatoms. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Johansson C, Bergman B (1994) Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol 126:643–652

    Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E, Schüβler A (2002) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 19–30

    Google Scholar 

  • Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31:139–147

    Google Scholar 

  • Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–37

    Article  PubMed  Google Scholar 

  • Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34:111–153

    CAS  Google Scholar 

  • Lyra C, Soumalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planctonic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

    CAS  PubMed  Google Scholar 

  • Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extensible file format for systematic information. Syst Biol 46:590–621

    CAS  PubMed  Google Scholar 

  • Mazel D, Houmard J, Castets AM, Tandeau de Marsac N (1990) Highly repetitive DNA sequences in cyanobacterial genomes. J Bacteriol 172:2755–2761

    CAS  PubMed  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  CAS  Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on the initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.). Hariot Protoplasma 193:3–9

    Google Scholar 

  • Moor AW (1969) Azolla: biology and agronomic significance. Bot Rev 35:17–34

    Google Scholar 

  • Nilsson M, Bergman B, Rasmussen U (2000) Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Arch Microbiol 173:97–102

    Article  CAS  PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  • Nylander JAA (2001) MrModeltest, version 1.1b. Distributed by the author

  • Oksanen I, Lohtander K, Sivonen K, Rikkinen J (2004) Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Int J Syst Evol Microbiol 54:765–772

    Article  CAS  PubMed  Google Scholar 

  • Paulsrud P, Lindblad P (1998) Sequence variation of the tRNA Leu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ Microbiol 64:310–315

    CAS  PubMed  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524

    Article  CAS  Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Croft L, Rolfe BG, Gunning BES (1990) DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to Anabaena strains. Appl Environ Microbiol 56:1263–1270

    CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. Transley review 116. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rambaut A (1996) Se-Al. Sequence Alignment Editor, version 1.0a1. Distributed by the author, Department of Zoology, University of Oxford

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  • Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272

    CAS  Google Scholar 

  • Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 179:204–210

    Article  Google Scholar 

  • Raven JA (2002) Evolution of cyanobacterial symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 329–346

    Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    Article  CAS  PubMed  Google Scholar 

  • Rippka R (1988) Recognition and identification of cyanobacteria. Methods Enzymol 167:28–67

    Google Scholar 

  • Rippka R, Herdman M (1992) Pasteur culture collection of cyanobacterial strains in axenic culture. Catalogue and taxonomic handbook, vol I: Catalog of strains, 1992/1993. Institute Pasteur, Paris

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial linage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer, Dordrecht, pp 13–35

    Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotech 5:233–241

    CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  Google Scholar 

  • Swofford DL (2001) PAUP* Phylogenetic analysis using parsimony and other methods, version 4.0. Sinauer

  • Tamas I, Svircev Z, Andersson SGE (2000) Determinative value of a portion of the nifH sequence for the genera Nostoc and Anabaena (Cyanobacteria). Curr Microbiol 41:197–200

    CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • West NJ, Adams DG (1997) Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site. Appl Environ Microbiol 63:4479–4484

    CAS  Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 487–514

    Google Scholar 

  • Wright D, Prickett T, Helm RF, Potts M (2001) Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51:1839–1852

    CAS  PubMed  Google Scholar 

  • Zheng WW, Nilsson M, Bergman B, Rasmussen U (2002) Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR fingerprinting. Theor Appl Genet 99:1187–1193

    Article  Google Scholar 

  • Zimmerman WJ, Culley DE (1991) Genetic variation at the apcAB, gvpAi, and nifH loci and in the DNA methylation among N2-fixing cyanobacteria designated Nostoc punctiforme. Microb Ecol 21:199–209

    Google Scholar 

  • Zimmerman WJ, Rosen BH (1992) Cyanobiont diversity within and among cycads on one field site. Can J Microbiol 38:1324–1328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Coby Weber and Björn Hansen are thanked for technical assistance. This work was supported by grants from Carl Tryggers Foundation and Nordic Academy for Advanced Study to U.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette M. Svenning.

Additional information

The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svenning, M.M., Eriksson, T. & Rasmussen, U. Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 183, 19–26 (2005). https://doi.org/10.1007/s00203-004-0740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0740-y

Keywords

Navigation