Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance

Abstract

In order to colonize mammalian wounds, the anaerobic bacterium Clostridium tetani must presumably cope with temporary oxic conditions. Therefore, the recently decoded genome sequence was searched for genes which could confer oxygen tolerance. A few identified systems such as superoxide dismutases and peroxidases are probably responsible for this protection against toxic oxygen species. Another system was detected, a heme oxygenase which could have a role in establishing or maintaining an anoxic microenvironment in the process of wound colonization. The hemT gene encoding the heme oxygenase is expressed in C. tetani, as shown by reverse transcription–PCR. When overexpressed in Escherichia coli, the enzyme converts heme to biliverdin under strict oxic conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arnon SS (1997) Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW (eds) The clostridia: molecular biology and pathogenesis. Academic, San Diego, pp 95–115

    Google Scholar 

  2. Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427

    Article  CAS  PubMed  Google Scholar 

  3. Briolat V, Reysset G (2002) Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. J Bacteriol 184:2333–2343

    Article  CAS  PubMed  Google Scholar 

  4. Brüggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68

    Article  Google Scholar 

  5. Brüggemann H, Bäumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321

    Article  PubMed  Google Scholar 

  6. Gottschalk G, Andreesen JR, Hippe H (1981) The genus Clostridium. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 1767–1803

    Google Scholar 

  7. Jean D, Briolat V, Reysset G (2004) Oxidative stress response in Clostridium perfringens. Microbiology 150:1649–1659

    Article  CAS  PubMed  Google Scholar 

  8. Lad L, Friedman J, Li H, Bhaskar B, De Montellano PRO, Poulos TL (2004) Crystal structure of human heme oxygenase-1 in a complex with biliverdin. Biochemistry 43:3793–3801

    Google Scholar 

  9. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108

    Article  CAS  PubMed  Google Scholar 

  10. Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270:687–698

    Google Scholar 

  11. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois JA, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien DK, Melville SB (2000) The anaerobic pathogen Clostridium perfringens can escape the phagosome of macrophages under aerobic conditions. Cell Microbiol 2:505–519

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  14. Schiavo G, Benfenati F, Poulain B, Rossetto O, Laureto PP de, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001

    Article  CAS  PubMed  Google Scholar 

  16. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    CAS  PubMed  Google Scholar 

  17. Wilks A (2002) Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4:603–6144

    Article  CAS  PubMed  Google Scholar 

  18. Wilks A, Schmitt MP (1998) Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita K, McDaid J, Ollinger R, Tsui TY, Berberat PO, Usheva A, Csizmadia E, Smith RN, Soares MP, Bach FH (2004) Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 18:765–767

    CAS  PubMed  Google Scholar 

  20. Zhu W, Wilks A, Stojiljkovic I (2000) Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182:6783–6790

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Popoff (Institut Pasteur, Paris) for helpful discussions and the provision of C. tetani strain CN655 and thank O. Valerius (Departments of Molecular Microbiology and Genetics, University of Göttingen) for mass spectrometric analyses. The work was supported by a grant from the Niedersächsisches Ministerium für Wissenschaft und Kultur to the Göttingen Genomics Laboratory and by funds from the Competence Network Göttingen “Genome Research of Bacteria”, financed by the German Federal Ministry of Education and Research (BMBF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gottschalk.

Additional information

Dedicated to Prof. Dr. Hans-Günter Schlegel, the pioneer of microbiology in Göttingen and beyond, on the occasion of his 80th birthday.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brüggemann, H., Bauer, R., Raffestin, S. et al. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch Microbiol 182, 259–263 (2004). https://doi.org/10.1007/s00203-004-0721-1

Download citation

Keywords

  • Clostridium tetani
  • Tetanus
  • Heme oxygenase
  • Oxidative stress
  • Aerotolerance
  • Iron acquisition