Skip to main content
Log in

Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii produces an extracellular CGTase when grown on starch at 55°C and pH 9.0. The gene encoding this CGTase was cloned and successfully expressed in Escherichia coli. It encodes a protein consisting of 721 amino acids with a signal sequence of 34 amino acids. On SDS–polyacrylamide gels, the purified CGTase from A. gottschalkii displayed the expected molecular mass of 78 kDa. The recombinant enzyme was purified with a yield of 13.5% and displayed a specific activity of 210 units/mg. This CGTase, which represents the first report of a CGTase from an anaerobic thermoalkaliphile, was active at a broad range of temperature and pH, namely 55–70°C and pH 5–10. It completely converted amylose, amylopectin and native starch to cyclodextrins, preferentially α-cyclodextrin. With a longer incubation period, the α-cyclodextrin to β-cyclodextrin ratio declined. Variations in substrate type and concentration influenced the product pattern. Increasing the substrate concentration (0.5–20.0%) and glucans containing branching points (α-1,6 glycosidic linkages) shifted the product pattern to: β-cyclodextin > α-cyclodextrin > γ-cyclodextrin. In addition to these cyclodextrins, larger cyclodextrins (>8 glucose units) were formed in the initial reaction period. The CGTase was stabilised against thermal inactivation by calcium ions and high substrate concentrations; and 5 mM of CaCl2 shifted the apparent melting point of the enzyme from 60°C to 69°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    Google Scholar 

  • Bovetto LJ, Backer DP, Villette JR, Sicard PJ, Bouquelet SJ (1992) Cyclomaltodextrin glucanotransferase from Bacillus circulans E 192. I. Purification and characterization of the enzyme. Biotechnol Appl Biochem 15:48–58

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton HTS, Robinson RE (1931) Universal buffer solutions and the dissociation constants of veronal. J Chem Soc 458:1456–1473

    Article  Google Scholar 

  • Chung HJ, Yoon SH, Lee MJ, Kim MJ, Kweon KS, Lee IW, Kim JW, Oh BH, Lee HS, Spiridonova VA, Park KW (1998) Characterization of a thermostable cyclodextrin glucanotransferase isolated from Bacillus stearothermophilus ET1. J Agric Food Chem 46:952–959

    Article  CAS  Google Scholar 

  • Doukyu N, Kuwahara H, Aono R (2003) Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents. Biosci Biotechnol Biochem 67:334–340

    Google Scholar 

  • Endo T, Zheng M, Zimmermann W (2002) Enzymatic synthesis and analysis of large-ring cyclodextrins. Aust J Chem 55:39–48

    Article  CAS  Google Scholar 

  • Fiedler G, Pajatsch M, Bock A (1996) Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. J Mol Biol 256:279–291

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, Okada S, Kuriki T (2003) Bioengineering and application of novel glucose polymers. Biocatal Biotransform 21:167–172

    Article  CAS  Google Scholar 

  • Gawande BN, Patkar AY (1999) Application of factorial designs for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22. Biotechnol Bioeng 64:168–173

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 183:5050–5057

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE (1969) A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132

    CAS  Google Scholar 

  • Klein C, Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J Mol Biol 217:737–750

    CAS  PubMed  Google Scholar 

  • Klenk HP, Ruepp A, Stark M, Zibat A, Becker I (2002) Screening for enzyme encoding genes in genomes of extremophilic prokaryotes. In: International congress on biocatalysis. Biocatalysis, Hamburg, p. 23

  • Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T (1999) Isolation and characterization of cyclic alpha-(1→4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 852:407–416

    Article  CAS  PubMed  Google Scholar 

  • Krisman CR (1962) A method for the colorimetric estimation of glycogen with iodine. Anal Biochem 4:17–23

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Larsen KL (2002) Large cyclodextrins. J Inclusion Phenom 43:1–13

    Article  CAS  Google Scholar 

  • Machida S, Ogawa S, Xiaohua S, Takaha T, Fujii K, Hayashi K (2000) Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett 486:131–135

    Article  CAS  PubMed  Google Scholar 

  • Macy JM, Snellen JE, Hungate RE (1972) Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323

    CAS  PubMed  Google Scholar 

  • Martins RF, Hatti-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterisation. Enzyme Microb Technol 30:116–124

    Google Scholar 

  • Martins RF, Hatti-Kaul R (2003) Bacillus agaradhaerens LS-3C cyclodextrin glycosyltransferase: activity and stability features. Enzyme Microb Technol 33:819–827

    Google Scholar 

  • Matioli G, Zanin GM, De Moraes FF (2001) Characterization of cyclodextrin glycosyltransferase from Bacillus firmus strain no. 37. Appl Biochem Biotechnol 91–93:643–654

    Article  Google Scholar 

  • Matioli G, Zanin GM, De Moraes FF (2002) Influence of substrate and product concentrations on the production of cyclodextrins by CGTase of Bacillus firmus, strain no. 37. Appl Biochem Biotechnol 98–100:947–961

    Article  Google Scholar 

  • Nielsen JE, Borchert TV (2000) Protein engineering of bacterial α-amylases. Biochim Biophys Acta 1543:253–274

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Heijne G von (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  CAS  PubMed  Google Scholar 

  • Norman BE, Jørgensen ST (1992) Thermoanaerobacter sp. CGTase its properties and application. Denpun Kagaku 39:101–108

    CAS  Google Scholar 

  • Pongsawasdi P, Yagisawa M (1988) Purification and some properties of cyclomaltodextrin glucanotransferases from Bacillus circulans. Agric Biol Chem 52:1099–1103

    Google Scholar 

  • Prowe SG (1996) Characterization of extracellular amylolytic enzymes and sodium coupled energy transduction of a newly isolated thermoalkaliphilic bacterium Thermoalcalibacter bogoriae. Phd thesis, Technical University of Hamburg–Harburg, Hamburg

  • Prowe SG, Antranikian G (2001) Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int J Syst Evol Microbiol 51:457–465

    CAS  PubMed  Google Scholar 

  • Prowe SG, Vossenberg JL van de, Driessen AJ, Antranikian G, Konings WN (1996) Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J Bacteriol 178:4099–4104

    CAS  PubMed  Google Scholar 

  • Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184:777–784

    CAS  PubMed  Google Scholar 

  • Slominska L, Sobkowiak B (1997) Studies on cyclodextrin synthesis by novel cyclodextrin glycosyl transferase. Starch 7/8:301–305

    Google Scholar 

  • Stoll VS, Blanchard JS (1990) Buffers: principles and practice. Methods Enzymol 182:24–38

    Article  CAS  PubMed  Google Scholar 

  • Tachibana Y, Kuramura A, Shirasaka N, Suzuki Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (1999) Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Appl Environ Microbiol 65:1991–1997

    Google Scholar 

  • Takada M, Nakagawa Y, Yamamoto M (2003) Biochemical and genetic analyses of a novel gamma-cyclodextrin glucanotransferase from an alkalophilic Bacillus clarkii 7364. J Biochem (Tokyo) 133:317–324

    Article  CAS  Google Scholar 

  • Terada Y, Yanase M, Takata H, Takaha T, Okada S (1997) Cyclodextrins are not the major cyclic alpha-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J Biol Chem 272:15729–15733

    Google Scholar 

  • Terada Y, Sanbe H, Takaha T, Kitahata S, Koizumi K, Okada S (2001) Comparative study of the cyclization reactions of three bacterial cyclomaltodextrin glucanotransferases. Appl Environ Microbiol 67:1453–1460

    Google Scholar 

  • Tomita K, Kaneda M, Kawamura K, Nakanishi K (1993) Purification and properties of a cyclodextrin glucanotransferase from Bacillus autolyticus 11149 and selective formation of β-cyclodextrin. J Ferment Bioeng 75:89–92

    Article  CAS  Google Scholar 

  • Tonkova A (1998) Bacterial cyclodextrin glucanotransferase. Enzyme Microb Technol 22:678–686

    Article  CAS  Google Scholar 

  • Veen BA van der, Alebeek GJ van, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000) The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. Eur J Biochem 267:658–665

    Google Scholar 

  • Vikmon M (1982) Rapid and simple spectrophotometric method for determination of microamounts of cyclodextrins. In: Szejtli JD (ed) First international symposium on cyclodextrins. Reidel, Dordrecht, pp 69–74

    Google Scholar 

  • Wind RD, Liebl W, Buitelaar RM, Penninga D, Spreinat A, Dijkhuizen L, Bahl H (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Appl Environ Microbiol 61:1257–1265

    Google Scholar 

Download references

Acknowledgement

We thank the Deutsche Bundesstiftung Umwelt (German Federal Environmental Foundation) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabed Antranikian.

Additional information

Dedicated to Prof. Dr. Hans G. Schlegel on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiemann, V., Dönges, C., Prowe, S.G. et al. Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Arch Microbiol 182, 226–235 (2004). https://doi.org/10.1007/s00203-004-0717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0717-x

Keywords

Navigation