Skip to main content

Advertisement

Log in

Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria are reported to produce secondary metabolites of which toxic and bioactive peptides are of scientific and public interest. Many peptides are synthesized by the non-ribosomal peptide synthesis pathway and their presence is a stable feature of individual clones. We isolated 18 clonal strains of Planktothrix from a single water sample from lake Maxsee near Berlin and analyzed them by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, HPLC, and PCR for their production of peptides and the presence of microcystin synthetase genes. Microcystins could be detected in seven of the strains with considerable variability of contents and numbers of structural variants. Other known peptides like anabaenopeptins B and E/F, microviridin I, and prenylagaramide B and new variants of known peptide classes like aeruginosins and cyanopeptolins were detected in some strains while lacking in others. The 18 strains represented 15 chemotypes with respect to their peptide patterns. In contrast, all strains were morphologically very similar with respect to cell dimensions and pigmentation. Given the diversity of chemotypes among the randomly selected isolates, an immense diversity of chemotypes in the entire population can be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c

References

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes 3-oscillatoriales. Arch Hydrobiol Suppl 80:327–472

    Google Scholar 

  • Becker JE, Moore RE, Moore BS (2004) Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325:35–42

    Article  CAS  PubMed  Google Scholar 

  • Blom JF, Robinson JA, Juttner F (2001) High grazer toxicity of [d-Asp3 (E)-Dhb7]microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon 39:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Castenholz RW (2001) The Archaea and the deeply branching and phototrophic bacteria. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Carmichael WW, Beasley V, Bunner DL, Eloff JN, Falconer IR, Gorham P, Harada K-I, Krishnamurthy T, Yu M-J, Moore RE, Rinehart KL, Runnegar MT, Skulberg OM, Watanabe M (1988) Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 26:971–973

    Article  CAS  PubMed  Google Scholar 

  • Christiansen G (2002) Untersuchungen zum Microcystinsynthese-Genecluster aus dem Cyanobakterium Planktothrix agardhii. PhD thesis, Humboldt Universität Berlin, Berlin

  • Christiansen G, Dittmann E, Ordorika LV, Rippka R, Herdman M, Börner T (2001) Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol 178:452–458

    Google Scholar 

  • Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Neilan BA, Erhard M, Döhren H von, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787

    Article  CAS  PubMed  Google Scholar 

  • Döhren H von, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97:2675–2705

    Article  PubMed  Google Scholar 

  • Du L, Shen B (2001) Biosynthesis of hybrid peptide–polyketide natural products. Curr Opin Drug Discov Devel 4:215–228

    CAS  PubMed  Google Scholar 

  • Erhard M, Döhren H von, Jungblut P (1997) Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol 15:906–909

    CAS  PubMed  Google Scholar 

  • Fastner J, Erhard M, Carmichael WW, Sun F, Rinehart KL, Rönicke H, Chorus I (1999) Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch Hydrobiol 145:147–163

    CAS  Google Scholar 

  • Fastner J, Erhard M, von Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol 67:5069–5076

    Google Scholar 

  • Frankmölle WP, Larsen LK, Caplan FT, Patterson GML, Knübel G, Levine IA, Moore RE (1992) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. J Antibiot 45:1451–1466

    PubMed  Google Scholar 

  • Fujii K, Sivonen K, Naganawa E, Harada K-I (2000) Non-toxic peptides from toxic cyanobacteria, Oscillatoria agardhii. Tetrahedron 56:725–733

    Article  CAS  Google Scholar 

  • Harada K-I, Mayumi T, Shimada T, Fujii K, Kondo F, Park HD, Watanabe MF (2001) Co-production of microcystins and aeruginopeptins by natural cyanobacterial bloom. Environ Toxicol 16:298–305

    Article  CAS  PubMed  Google Scholar 

  • Henriksen P, Moestrup O (1997) Seasonal variations in microcystin contents of Danish cyanobacteria. Nat Toxins 5:901–913

    Article  Google Scholar 

  • Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification if microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410

    Google Scholar 

  • Hoffmann D, Hevel JM, Moore RE, Moore BS (2003) Sequence analysis and biochemical characterization of the nostopeptolide. A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311:171–180

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J Nat Prod 60:724–726

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann R, Spengler B, Lützenkirchen F (1993) Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom 7:902–910

    CAS  PubMed  Google Scholar 

  • Kleinkauf H, Döhren H von (1997) Peptide antibiotics. In: Rehm H-J, Reed G (eds) Biotechnology, vol 7. VCH, Weinheim, pp 277–322

    Google Scholar 

  • Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6:R39–R48

    Article  CAS  PubMed  Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841

    Article  PubMed  Google Scholar 

  • Lawton LA, Edwards C, Codd GA (1994) Extraction and high-performance liquid chromatography method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530

    Google Scholar 

  • Luukkainen R, Sivonen K, Namikoshi M, Färdig M, Rinehart KL, Niemelä SI (1993) Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a new microcystin. Appl Environ Microbiol 59:2204–2209

    Google Scholar 

  • Luukkainen R, Namikoshi M, Sivonen K, Rinehart KL, Niemelä SI (1994) Isolation and identification of 12 microcystins from four strains and two bloom samples of Microcystis spp: structure of a new hepatotoxin. Toxicon 32:133–139

    Google Scholar 

  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Shin HJ, Matsuda H, Ishida K, Yamaguchi K (1997) A cyclic peptide, anabaenopeptin B, from the cyanobacterium Oscillatoria agardhii. Phytochemistry 44:449–452

    Article  CAS  Google Scholar 

  • Murakami M, Itou Y, Ishida K, Shin HJ (1999) Prenylagaramides A and B, new cyclic peptides from two strains of Oscillatoria agardhii. J Nat Prod 62:752–755

    Article  CAS  PubMed  Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17:373–384

    CAS  Google Scholar 

  • Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley CR, Carmichael WW, Evans AM (1992a) Identification of 12 hepatotoxins from Homer lake bloom of the cyanobacterium Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. J Org Chem 57:866–872

    CAS  Google Scholar 

  • Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Rouhiainen L, Luukkainen R, Rinehart KL (1992b) Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from Anabaena sp. strain 66. Chem Res Toxicol 5:661–666

    CAS  PubMed  Google Scholar 

  • Namikoshi M, Sun F, Choi BW, Rinehart KL, Carmichael WW, Evans WR, Beasley VR (1995) Seven more microcystins from Homer Lake cells: application of the general method for structure assignment of peptides containing dehydroamino acid unit(s). J Org Chem 60:3671–3679

    CAS  Google Scholar 

  • Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    CAS  PubMed  Google Scholar 

  • Neumann U, Campos V, Cantarero S, Urrutia H, Heinze R, Weckesser J, Erhard M (2000) Co-occurrence of non-toxic (cyanopeptolin) and toxic (microcystin) peptides in a bloom of Microcystis sp. from a Chilean Lake. Syst Appl Microbiol 23:191–197

    CAS  PubMed  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem (Tokyo) 126:520–529

    CAS  Google Scholar 

  • Park HD, Iwami C, Watanabe MF, Harada K-I, Okino T, Hayashi H (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72

    Article  CAS  Google Scholar 

  • Rantala A, Fewer D, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K (2004) Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci USA 101:568–573

    Google Scholar 

  • Rohrlack T, Henning M, Kohl J-G (2001) Isolation and characterization of colony-forming Microcystis aeruginosa strains. In: Chorus I (ed) Cyanotoxins—occurrence, causes, consequences. Springer, Berlin Heidelberg New York, pp 152–158

    Google Scholar 

  • Rouhiainen L, Paulin L, Suomalainen S, Hyytiainen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167

    Article  CAS  PubMed  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70:686–692

    Google Scholar 

  • Shin HJ, Matsuda H, Murakami M, Yamaguchi K (1997) Aeruginosins 205A and -B, serine protease inhibitory glycopeptides from the cyanobacterium Oscillatoria agadhii (NIES-205). J Org Chem 62:1810–1813

    Article  CAS  Google Scholar 

  • Shin HJ, Matsuda H, Murakami M, Yamaguchi K (1998) Anabaenopeptins E and F, two new cyclic peptides from the cyanobacterium Oscillatoria agadhii (NIES-204). J Nat Prod 60:139–141

    Article  Google Scholar 

  • Sivonen K, Jones GJ (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. Spon, London, pp 41–111

    Google Scholar 

  • Sivonen K, Skulberg OM, Namikoshi M, Evans WR, Carmichael WW, Rinehart KL (1992) Two methyl ester derivates of microcystins, cyclic heptapeptide hepatotoxins, isolated from Anabaena flos-aquae strain CYA 83/1. Toxicon 30:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG (2002) Taxonomic revision of water-bloom-forming species of oscillatoroid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595

    Article  CAS  PubMed  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, Döhren H von, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–poliketide synthetase system. Chem Biol 7:753–764

    Article  CAS  PubMed  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273

    Article  CAS  PubMed  Google Scholar 

  • Welker M, Fastner J, Erhard M, Döhren H von (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374

    Article  CAS  PubMed  Google Scholar 

  • Welker M, Döhren H von, Täuscher H, Steinberg CEW, Erhard M (2003) Toxic Microcystis in shallow lake Müggelsee (Germany)—temporal dynamic, spatial distribution, diversity. Arch Hydrobiol 157:227–248

    Article  Google Scholar 

  • Welker M, Brunke M, Preussel K, Lippert I, Döhren H von (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single colony mass spectrometry. Microbiology 150:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Wiedner C, Nixdorf B, Heinze R, Wirsing B, Neumann U, Weckesser J (2002) Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Arch Hydrobiol 155:383–400

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Deutsche Forschungsgemeinschaft (DFG, grant no. Do 270/10). We thank Torsten Schwecke and Karina Preuβel for assistance with cultivation of the strains and PCR work. Jutta Fastner, UBA, kindly provided Mcyst standards. Comments on MS and PSD data by Marcel Erhard, AnagnosTec Luckenwalde, are gratefully acknowledged. Further, we want to thank Rosmarie Rippka, Institut Pasteur, for assistance in our—unfortunately unsuccessful—attempts at the axenization of strains and two anonymous reviewers for useful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welker, M., Christiansen, G. & von Döhren, H. Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Arch Microbiol 182, 288–298 (2004). https://doi.org/10.1007/s00203-004-0711-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0711-3

Keywords

Navigation