Skip to main content

Advertisement

Log in

Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, the use of creatinine as an alternative nitrogen source in Corynebacterium glutamicum, the identification of a membrane protein involved in creatinine uptake, the transcriptional regulation of the corresponding gene, and expression regulation of the gene encoding the creatinine deaminase are reported. As shown by mutant analyses, RNA hybridization experiments and real-time PCR, the expression of two genes, crnT and codA, is increased in response to nitrogen limitation, and regulation depends on the global nitrogen regulator AmtR. In addition, synthesis of creatinine deaminase during nitrogen starvation was shown by two-dimensional gel electrophoresis and MALDI-TOF-MS followed by peptide mass fingerprint analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Microbiol 13:279–301

    Google Scholar 

  • Appleyard G, Woods DD (1956) The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol 14:351–356

    CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, Wiley, NY

  • Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    CAS  PubMed  Google Scholar 

  • Burkovski A (2003a) I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 179:83–88

    CAS  PubMed  Google Scholar 

  • Burkovski A (2003b) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 27:617–628

    Article  CAS  PubMed  Google Scholar 

  • Burkovski A (2004) Nitrogen metabolism and its regulation. In: Bott M, Eggeling L (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton (in press)

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328

    Article  CAS  PubMed  Google Scholar 

  • Grant SNG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    CAS  PubMed  Google Scholar 

  • Hermann T, Wersch G, Uhlemann E-M, Schmid R, Burkovski A (1998) Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 19:3217–3221

    CAS  PubMed  Google Scholar 

  • Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21:654–659

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Google Scholar 

  • Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey D, Rückert C, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Shimizu S, Yamada H (1987) Cytosine deaminase that hydrolyzes creatinine to N-methylhydantoin in various cytosine deaminase-forming microorganisms. Arch Microbiol 147:58–63

    CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    CAS  Google Scholar 

  • Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147:135–143

    CAS  PubMed  Google Scholar 

  • Möller B, Hippe H, Gottschalk G (1986) Degradation of various amine compounds by mesophilic clostridia. Arch Microbiol 145:85–90

    PubMed  Google Scholar 

  • Niebisch A, Bott M (2001) Molecular analysis of the cytochrom bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282–294

    Article  CAS  PubMed  Google Scholar 

  • Nolden L, Ngouoto-Nkili C-E, Bendt AK, Krämer R, Burkovski A (2001a) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295

    Google Scholar 

  • Nolden L, Farwick M, Krämer R, Burkovski A (2001b) Glutamine synthetases in Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91–98

    Article  CAS  PubMed  Google Scholar 

  • Pátek M, Eikmanns BJ, Pátek J, Sahm H (1996). Promoters of Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    PubMed  Google Scholar 

  • Polacheck I, Kwon-Chung KJ (1980) Creatinine metabolism in Cryptococcus neoformans and Cryptococcus bacillisporus. J Bacteriol 142:15–20

    CAS  PubMed  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Shimizu S, Kim J-M, Yamada H (1986) Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms. Arch Microbiol 145:322–328

    CAS  Google Scholar 

  • Siewe RM, Weil B, Krämer R (1995) Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164:98–103

    Article  CAS  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403

    Article  CAS  PubMed  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eggeling L, Krämer R, Jahns T (1998) Urea uptake and urease activity in Corynebacterium glutamicum. Arch Microbiol 169:411–416

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kaloniwski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    Google Scholar 

  • Thomas G, Coutts G, Merrick M (2000) The glnKamtB operon, a conserved gene pair in prokaryotes. Trends Genet 16:11–14

    Google Scholar 

  • Tsuru D, Oka I, Yoshimoto T (1976) Creatinine decomposing enzymes in Pseudomonas putida. Agric Biol Chem 40:1011–1018

    Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira L, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Reinhard Krämer for his continuous interest and support. The help of U. Hildebrandt and H. Bothe with the real-time PCR experiments is gratefully acknowledged. This work was supported by the Bundesministerium für Forschung und Technologie (GenoMik program) and the Deutsche Forschungsgemeinschaft (BU894/1-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Burkovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendt, A.K., Beckers, G., Silberbach, M. et al. Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum . Arch Microbiol 181, 443–450 (2004). https://doi.org/10.1007/s00203-004-0679-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0679-z

Keywords