Skip to main content
Log in

In Saccharomyces cerevisiae, the effect of H2O2 on ATP, but not on glyceraldehyde-3-phosphate dehydrogenase, depends on the glucose concentration

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

As has been previously shown, Saccharomyces cerevisiae grown in 2% or 0.025% glucose uses this carbohydrate by the fermentative or oxidative pathways, respectively. Depending on the glucose concentration in the medium, the effect of the addition of H2O2 on the level of ATP and on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity differed. In the presence of 2% glucose, ATP and GAPDH decreased sharply during the first few minutes of treatment, whereas in the presence of 0.025% glucose, GAPDH activity decreased similarly, but the ATP level remained practically unchanged. The addition of 3 mM glutathione to the culture media prevented the depletion of ATP levels and GAPDH activity in the presence of H2O2. Catalase and superoxide dismutase activities did not vary significantly when yeast cells were grown either in 2% or in 0.025% glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson DE (1966) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Google Scholar 

  • Bergmeyer HU, Bergmeyer J, Grassl M (1983) Methods of enzymatic analysis, vol II, 3rd edn. Verlag Chemie, Weinheim, Germany

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398

    CAS  PubMed  Google Scholar 

  • Chaput M, Brygier J, Lion Y, Sels A (1983) Potentiation of oxygen toxicity by menadione in Saccharomyces cerevisiae. Biochimie 65:501–512

    CAS  PubMed  Google Scholar 

  • Colussi C, Albertini MC, Coppola S, Rovidati S, Galli F, Ghibelli L (2000) H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J 14:2266–2276

    Article  CAS  PubMed  Google Scholar 

  • Costa VM, Amorim MA, Quintanilha A, Moradas-Ferreira P (2002) Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33:1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Danshina PV, Schmalhausen EV, Avetisyan AV, Muronetz VI (2001) Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis. IUBMB Life 51:309–314

    Article  CAS  PubMed  Google Scholar 

  • Del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    Article  PubMed  Google Scholar 

  • Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  Google Scholar 

  • Gancedo JM, Gancedo C (1986) Catabolite repression mutants of yeast. FEMS Microbiol Rev 32:179–197

    Article  CAS  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    CAS  PubMed  Google Scholar 

  • Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656

    CAS  PubMed  Google Scholar 

  • Horiguchi H, Yurimoto H, Goh T, Nakagawa T, Kato N, Sakai Y (2001) Peroxisomal catalase in the methylotrophic yeast Candida boidinii: transport efficiency and metabolic significance. J Bacteriol 183:6372–6383

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis, AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    Article  CAS  PubMed  Google Scholar 

  • McAlister L, Holland MJ (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027

    CAS  PubMed  Google Scholar 

  • Osorio H, Carvalho E, del Valle M, Gunther Sillero MA, Moradas-Ferreira P, Sillero A (2003) H2O2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach. Eur J Biochem 270:1578–1589

    CAS  PubMed  Google Scholar 

  • Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology 142:1775–1782

    CAS  PubMed  Google Scholar 

  • Pronk JT, Yde Steensma H, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    CAS  PubMed  Google Scholar 

  • Ribeiro JM, Juzgado D, Crespo E, Sillero A (1990) Computer program for the reservoir model of metabolic crossroads. Comput Biol Med 20:35–46

    CAS  PubMed  Google Scholar 

  • Rytka J, Sledziewski A, Lukaszkiewicz J, Bilinski T (1978) Haemoprotein formation in yeast. III. The role of carbon catabolite repression in the regulation of catalase A and T formation. Mol Gen Genet 160:51–57

    CAS  PubMed  Google Scholar 

  • Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374 (Pt2):513–519

    Article  CAS  PubMed  Google Scholar 

  • Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 277:16853–16859

    Article  CAS  PubMed  Google Scholar 

  • Sillero MA, Del Valle M, Zaera E, Michelena P, Garcia AG, Sillero A (1994) Diadenosine 5’,5′′-P1,P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells. Biochimie 76:404–409

    Article  CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    PubMed  Google Scholar 

  • Weibel KE, Mor JR, Fiechter A (1974) Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal Biochem 58:208–216

    PubMed  Google Scholar 

  • Westerbeek-Marres CA, Moore MM, Autor AP (1988) Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae. The role of respiratory chain activity. Eur J Biochem 174:611–620

    CAS  PubMed  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by grants from Dirección General de Investigación Científica y Técnica (BMC-2002-00866), Comunidad de Madrid (08/0021.1/2001), and Instituto de Salud Carlos III, RCMN (C03/08), Madrid, Spain. We thank Anabel de Diego and Cristina Almansa for their excellent technical assistance, Dr. Claudio F. Heredia and Dr. Eduardo Silles for helpful discussions, and Dr. Miguel Manzanares for critical reading of the manuscript. H.O. was supported by a fellowship from the Fundação para a Ciência e a Tecnología (SFRH/BD/1477/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sillero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osório, H., Moradas-Ferreira, P., Günther Sillero, M.A. et al. In Saccharomyces cerevisiae, the effect of H2O2 on ATP, but not on glyceraldehyde-3-phosphate dehydrogenase, depends on the glucose concentration. Arch Microbiol 181, 231–236 (2004). https://doi.org/10.1007/s00203-004-0648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0648-6

Keywords

Navigation