Skip to main content
Log in

Protein phosphorylation on tyrosine in bacteria

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Protein phosphorylation on tyrosine has been demonstrated to occur in a wide array of bacterial species and appears to be ubiquitous among prokaryotes. This covalent modification is catalyzed by autophosphorylating ATP-dependent protein-tyrosine kinases that exhibit structural and functional features similar, but not identical, to those of their eukaryotic counterparts. The reversibility of the reaction is effected by two main classes of protein-tyrosine phosphatases: one includes conventional eukaryotic-like phosphatases and dual-specific phosphatases, and the other comprises acidic phosphatases of low molecular weight. Less frequently, a third class concerns enzymes of the polymerase-histidinol phosphatase type. In terms of genomic organization, the genes encoding a protein-tyrosine phosphatase and a protein-tyrosine kinase in a bacterial species are most often located next to each other on the chromosome. In addition, these genes are generally part of large operons that direct the coordinate synthesis of proteins involved in the production or regulation of exopolysaccharides and capsular polysaccharides. Recent data provide evidence that there exists a direct relationship between the reversible phosphorylation of proteins on tyrosine and the production of these polysaccharidic polymers, which are also known to be important virulence factors. Therefore, a new concept has emerged suggesting the existence of a biological link between protein-tyrosine phosphorylation and bacterial pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M (1995) Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177:1788–1796

    CAS  PubMed  Google Scholar 

  • Arricau N, Hermant D, Waxin H, Popoff MY (1997) Molecular characterization of the Salmonella typhi StpA protein that is related to both Yersinia YopE cytotoxin and YopH tyrosine phosphatase. Res Microbiol 148:21–26

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Niehaus K, Puhler A (1995) Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol 16:191–203

    CAS  PubMed  Google Scholar 

  • Bender MH, Yother J (2001) CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J Biol Chem 276:47966–47974

    CAS  PubMed  Google Scholar 

  • Bliska JB, Falkow S (1993) The role of host tyrosine phosphorylation in bacterial pathogenesis. Trends Genet 9:85–89

    Article  CAS  PubMed  Google Scholar 

  • Bugert P, Geider K (1997) Characterization of the amsI gene product as a low molecular weight acid phosphatase controlling exopolysaccharide synthesis of Erwinia amylovora. FEBS Lett 400:252–256

    Article  CAS  PubMed  Google Scholar 

  • Chiang TM, Reizer J, Beachey EH (1989) Serine and tyrosine protein kinase activities in Streptococcus pyogenes. Phosphorylation of native and synthetic peptides of streptococcal M proteins. J Biol Chem 264:2957–2962

    CAS  PubMed  Google Scholar 

  • Chow K, Ng D, Stokes R, Johnson P (1994) Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiol Lett 124:203–207

    Article  CAS  PubMed  Google Scholar 

  • Cieslewicz MJ, Kasper DL, Wang Y, Wessels MR (2001) Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem 276:139–146

    CAS  PubMed  Google Scholar 

  • Cortay JC, Duclos B, Cozzone AJ (1986) Phosphorylation of an Escherichia coli protein at tyrosine. J Mol Biol 187:305–308

    CAS  PubMed  Google Scholar 

  • Cowley SC, Babakaiff R, Av-Gay Y (2002) Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res Microbiol 153:233–241

    Article  CAS  PubMed  Google Scholar 

  • Cozzone AJ (1988) Protein phosphorylation in prokaryotes. Annu Rev Microbiol 42:97–125

    Article  CAS  PubMed  Google Scholar 

  • Cozzone AJ (1993) ATP-dependent protein kinases in bacteria. J Cell Biochem 51:7–13

    CAS  PubMed  Google Scholar 

  • Cozzone AJ (1998) Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol 52:127–164

    CAS  PubMed  Google Scholar 

  • Dadssi M, Cozzone AJ (1990) Evidence of protein-tyrosine kinase activity in the bacterium Acinetobacter calcoaceticus. J Biol Chem 265:20996–20999

    CAS  PubMed  Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Perez-Martinez G, Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolic repression and inducer exclusion but not inducer expulsion. J Bacteriol 182:2582–2590

    Article  CAS  PubMed  Google Scholar 

  • Doublet P, Vincent C, Grangeasse C, Cozzone AJ, Duclos B (1999) On the binding of ATP to the autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii. FEBS Lett 445:137–143

    Article  CAS  PubMed  Google Scholar 

  • Doublet P, Grangeasse C, Obadia B, Vaganay E, Cozzone AJ (2002) Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem 277:37339–37348

    Article  CAS  PubMed  Google Scholar 

  • Duclos B, Grangeasse C, Vaganay E, Riberty M, Cozzone AJ (1996) Autophosphorylation of a bacterial protein at tyrosine. J Mol Biol 259:891–895

    Article  CAS  PubMed  Google Scholar 

  • Frasch SC, Dworkin M (1996) Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J Bacteriol 178:4084–4088

    CAS  PubMed  Google Scholar 

  • Freestone P, Grant S, Trinei M, Onoda T, Norris V (1998) Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 144:3289–3295

    CAS  PubMed  Google Scholar 

  • Grangeasse C, Doublet P, Vaganay E, Vincent C, Deleage G, Duclos B, Cozzone AJ (1997a) Characterization of a bacterial gene encoding an autophosphorylating protein tyrosine kinase. Gene 204:259–265

    Article  CAS  PubMed  Google Scholar 

  • Grangeasse C, Vaganay E, Doublet P, Riberty M, Cozzone AJ, Duclos B (1997b) Cyclic AMP stimulates the protein tyrosine kinase activity of Acinetobacter calcoaceticus. FEMS Microbiol Lett 152:333–337

    Article  CAS  Google Scholar 

  • Grangeasse C, Doublet P, Vincent C, Vaganay E, Riberty M, Duclos B, Cozzone AJ (1998) Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278:339–347

    Article  CAS  PubMed  Google Scholar 

  • Grangeasse C, Doublet P, Cozzone AJ (2002) Tyrosine phosphorylation of protein kinase Wzc from Escherichia coli K12 occurs through a two-step process. J Biol Chem 277:7127–7135

    Article  CAS  PubMed  Google Scholar 

  • Grangeasse C, Obadia B, Mijakovic I, Deutscher J, Cozzone AJ, Doublet P (2003) Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278:39323–39329

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    CAS  PubMed  Google Scholar 

  • Howell LD, Griffiths C, Slade LW, Potts M, Kennelly PJ (1996) Substrate specificity of IphP, a cyanobacterial dual-specificity protein phosphatase with MAP kinase phosphatase activity. Biochemistry 35:7566–7572

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Schell M (1995) Molecular characterization of the eps cluster of Pseudomonas solanacearum and its transcriptional regulation at a single promoter. Mol Microbiol 16:977–989

    CAS  PubMed  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    CAS  PubMed  Google Scholar 

  • Ilan O, Bloch Y, Frankel G, Ullrich H, Geider K, Rosenshine I (1999) Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J 18:3241–3248

    Article  CAS  PubMed  Google Scholar 

  • Kaniga K, Uralil J, Bliska JB, Galan JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 21:633–641

    CAS  PubMed  Google Scholar 

  • Kennelly PJ (2002) Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett 206:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389

    Article  CAS  PubMed  Google Scholar 

  • Kennelly PJ, Potts M (1996) Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J Bacteriol 178:4759–4764

    CAS  PubMed  Google Scholar 

  • Kennelly PJ, Potts M (1999) Life among the primitives: protein O-phosphatases in prokaryotes. Front Biosci 4:D372–385

    CAS  PubMed  Google Scholar 

  • Koul A, Choidas A, Treder M, Tyagi AK, Drlica K, Singh Y, Ullrich A (2000) Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 182:5425–5432

    Article  CAS  PubMed  Google Scholar 

  • Krebs EG, Fisher EH (1956) The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 20:150–157

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Strohl WR (1996) Cloning, purification, and properties of a phosphotyrosine protein phosphatase from Streptomyces coelicolor A3(2). J Bacteriol 178:136–142

    CAS  PubMed  Google Scholar 

  • Li YP, Curley G, Lopez M, Chavez M, Glew R, Aragon A, Kumar H, Baca OG (1996) Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils. Acta Virol 40:263–272

    CAS  PubMed  Google Scholar 

  • Lin WS, Cunneen T, Lee CY (1994) Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharides in Staphylococcus aureus. J Bacteriol 176:7005–7016

    CAS  PubMed  Google Scholar 

  • Loomis WF, Shaulsky G, Wang N (1997) Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110:1141–1145

    CAS  PubMed  Google Scholar 

  • Manaï M, Cozzone AJ (1983) Characterization of the amino acids phosphorylated in E. coli proteins. FEMS Microbiol Lett 17 : 87–91

    Article  Google Scholar 

  • Matsumoto A, Hong SK, Ishizuka H, Horinouchi S, Beppu T (1994) Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146:47–56

    CAS  PubMed  Google Scholar 

  • Mijakovic I, Poncet S, Boël G, Mazé A, Gillet S, Jamet E, Decottignies P, Grangeasse C, Doublet P, Le Maréchal P, Deutscher J (2003) Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenase. EMBO J 22:4709–4718

    Article  CAS  PubMed  Google Scholar 

  • Morona JK, Morona R, Paton JC (1997) Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763

    Article  CAS  PubMed  Google Scholar 

  • Morona JK, Paton JC, Miller DC, Morona R (2000) Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol 35:1431–1442

    Article  CAS  PubMed  Google Scholar 

  • Morona JK, Morona R, Miller DC, Paton JC (2002) Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184:577–583

    Article  CAS  PubMed  Google Scholar 

  • Morona JK, Morona R, Miller DC, Paton JC (2003) Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol 185:3009–3019

    Article  CAS  PubMed  Google Scholar 

  • Murli S, Watson RO, Galan JE (2001) Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810

    Article  CAS  PubMed  Google Scholar 

  • Nakar D, Gutnick DL (2003) Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. J Bacteriol 185:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer D, Becker A (2001) The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J Bacteriol 183:5163–5170

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky PC, Maloy S (1995) Protein phosphorylation on serine, threonine, and tyrosine residues modulates membrane-protein interactions and transcriptional regulation in Salmonella typhimurium. Genes Dev 9:2034–2041

    CAS  PubMed  Google Scholar 

  • Paiement A, Hocking J, Whitfield C (2002) Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group I capsules in Escherichia coli. J Bacteriol 184:6437–6447

    Article  PubMed  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73:857–871

    CAS  PubMed  Google Scholar 

  • Potts M, Sun H, Mockaitis K, Kennelly PJ, Reed D, Tonks NK (1993) A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem 268:7632–7635

    CAS  PubMed  Google Scholar 

  • Preneta R, Jarraud S, Vincent C, Doublet P, Duclos B, Etienne J, Cozzone AJ (2002) Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B 131:103–112

    Article  CAS  PubMed  Google Scholar 

  • Ray MK, Kumar GS, Shivaji S (1994) Tyrosine phosphorylation of a cytoplasmic protein from the antartic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 122:49–54

    CAS  Google Scholar 

  • Rubens CE, Heggen LM, Haft RF, Wessels MR (1993) Identification of cpsD, a gene essential for type III capsule expression in group B streptococci. Mol Microbiol 8:843–855

    CAS  PubMed  Google Scholar 

  • Saier MH Jr (1993) Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J Cell Biochem 51:62–68

    CAS  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    PubMed  Google Scholar 

  • Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY (1997) The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143:2395–2405

    CAS  PubMed  Google Scholar 

  • Shi L, Potts M, Kennelly PJ (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253

    CAS  PubMed  Google Scholar 

  • Soulat D, Vaganay E, Duclos B, Genestier AL, Etienne J, Cozzone AJ (2002) Staphylococcus aureus contains two low-molecular-mass phosphotyrosine protein phosphatases. J Bacteriol 184:5194–5199

    Article  CAS  PubMed  Google Scholar 

  • South SL, Nichols R, Montie TC (1994) Tyrosine kinase activity in Pseudomonas aeruginosa. Mol Microbiol 12:903–910

    CAS  PubMed  Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  PubMed  Google Scholar 

  • Thomas SR, Trust TJ (1995) Tyrosine phosphorylation of the tetragonal paracrystalline array of Aeromonas hydrophila : molecular cloning and high-level expression of the S-layer protein gene. J Mol Biol 245:568–581

    Article  CAS  PubMed  Google Scholar 

  • Umeyama T, Tanabe Y, Aigle BD, Horinouchi S (1996) Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol Lett 144:177–184

    CAS  PubMed  Google Scholar 

  • Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477

    CAS  PubMed  Google Scholar 

  • Vincent C, Duclos B, Grangeasse C, Vaganay E, Riberty M, Cozzone AJ (2000) Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304:311–321

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  Google Scholar 

  • Warner KM, Bullerjahn GS (1994) Light-dependent tyrosine phosphorylation in the cyanobacterium Prochlorothrix hollandica. Plant Physiol 105:629–633

    CAS  PubMed  Google Scholar 

  • Waters B, Vujaklija D, Gold MR, Davies J (1994) Protein tyrosine phosphorylation in Streptomycetes. FEMS Microbiol Lett 120:187–190

    CAS  Google Scholar 

  • Wu J, Ohta N, Zhao JL, Newton A (1999) A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci U S A 96:13068–13073

    Article  CAS  PubMed  Google Scholar 

  • Wugeditsch T, Paiment A, Hocking J, Drummelsmith J, Forrester C, Whitfield C (2001) Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276:2361–2371

    Article  CAS  PubMed  Google Scholar 

  • Zhang CC (1996) Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20:9–15

    PubMed  Google Scholar 

  • Zhao X, Lam JS (2002) WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem 277:4722–4730

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain J. Cozzone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cozzone, A.J., Grangeasse, C., Doublet, P. et al. Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181, 171–181 (2004). https://doi.org/10.1007/s00203-003-0640-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0640-6

Keywords

Navigation