Skip to main content
Log in

Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The decay of Bacillus subtilis aprE leader-lacZ mRNA was examined in Escherichia coli wild-type and in mutants deficient in RNase E, RNase G, or both. Two versions of the mRNA were studied: the wild-type mRNA, which has a stem-loop at the 5′ end, and a mutant mRNA, with a single-stranded 5′ end. The half-life of both transcripts was determined by RNase E, the half-life of the mutant transcript being one-third of that of the wild-type transcript. RNase G cleaved both transcripts at a site within an AU-rich sequence in the stem-loop region, but cleavage was much more efficient when the stem-loop was destabilized. RNase E cleaved at the same site, but less efficiently and only in the mutant transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a

Similar content being viewed by others

References

  • Agaisse H, Lereclus D (1996) STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20:633–643

    CAS  PubMed  Google Scholar 

  • Andersson SGE, Kurland CG (1990) Codon preferences in free-living microorganisms. Microbiol Rev 54:198–210

    CAS  PubMed  Google Scholar 

  • Ayer DE, Dynan WS (1988) Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol 8:2021–2033

    CAS  PubMed  Google Scholar 

  • Baker KE, Mackie GA (2003) Ectopic RNase E sites promote bypass of 5′-end-dependent mRNA decay in Escherichia coli. Mol Microbiol 47:75–88

    Article  CAS  PubMed  Google Scholar 

  • Bechhofer DH (1993) 5′ mRNA stabilizers. In: Belasco J, Brawerman G (eds) Control of messenger RNA stability. Academic, San Diego, pp 31–52

  • Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99:9697–9702

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Beckwith JR (1965) Ochre mutants, a new class of suppressible nonsense mutants. J Mol Biol 13:629–637

    Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: A high efficiency plasmid transformating RecA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:376–378

    CAS  Google Scholar 

  • Coburn GA, Mackie GA (1999) Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 62:55–108

    CAS  PubMed  Google Scholar 

  • Cohen SN, McDowall KJ (1997) RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23:1099–1106

    CAS  PubMed  Google Scholar 

  • Condon C, Putzer H (2002) The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 30:5339–5346

    Article  CAS  PubMed  Google Scholar 

  • Deana A, Ehrlich R, Reiss C (1998) Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo. Nucleic Acids Res 26:4778–4782

    Article  CAS  PubMed  Google Scholar 

  • DiMari JF, Bechhofer DH (1993) Initiation of mRNA decay in Bacillus subtilis. Mol Microbiol 7:705–717

    CAS  PubMed  Google Scholar 

  • Emory SA, Bouvet P, Belasco JG (1992) A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev 6:135–148

    CAS  PubMed  Google Scholar 

  • Grunberg-Manago M (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193–227

    Article  CAS  PubMed  Google Scholar 

  • Hambraeus G, Persson M, Rutberg B (2000) The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. Microbiology 146:3051–3059

    CAS  PubMed  Google Scholar 

  • Hambraeus G, Karhumaa K, Rutberg B (2002) A 5′ stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148:1795–1803

    CAS  PubMed  Google Scholar 

  • Hambraeus G, von Wachenfeldt C, Hederstedt L (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 269:706–714

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Diwa A, Belasco JG (2000) Regions of RNase E important for 5′-end-dependent RNA cleavage and autoregulated synthesis. J Bacteriol 182:2468–2475

    Article  CAS  PubMed  Google Scholar 

  • Joyce SA, Dreyfus M (1998) In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli. J Mol Biol 282:241–254

    Article  CAS  PubMed  Google Scholar 

  • Kaga N, Umitsuki G, Nagai K, Wachi M (2002) RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci Biotechnol Biochem 66:2216–2220

    Article  CAS  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    CAS  PubMed  Google Scholar 

  • Lee K, Bernstein JA, Cohen SN (2002) RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol Microbiol 43:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1999) RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18:2878–2885

    Article  CAS  PubMed  Google Scholar 

  • Mackie GA (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395:720–723

    Article  CAS  PubMed  Google Scholar 

  • Mackie GA (2000) Stabilization of circular rpsT mRNA demonstrates the 5′-end dependence of RNase E action in vivo. J Biol Chem 275:25069–25072

    Article  CAS  PubMed  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    CAS  PubMed  Google Scholar 

  • McDowall KJ, Hernandez RG, Lin-Chao S, Cohen SN (1993) The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J Bacteriol 175:4245–4249

    CAS  PubMed  Google Scholar 

  • Mitra S, Bechhofer DH (1994) Substrate specificity of an RNase III-like activity from Bacillus subtilis. J Biol Chem 269:31450–31456

    CAS  PubMed  Google Scholar 

  • Mitra S, Hue K, Bechhofer DH (1996) In vitro processing activity of Bacillus subtilis polynucleotide phosphorylase. Mol Microbiol 19:329–342

    Article  CAS  PubMed  Google Scholar 

  • Nilsson G, Belasco JG, Cohen SN, von Gabain A (1987) Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA 84:4890–4894

    CAS  PubMed  Google Scholar 

  • Persson M, Glatz E, Rutberg B (2000) Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol 182:689–695

    CAS  PubMed  Google Scholar 

  • Putzer H, Gendron N, Grunberg-Manago M (1992) Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11:3117–3127

    CAS  PubMed  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    CAS  PubMed  Google Scholar 

  • Tock MR, Walsh AP, Carroll G, McDowall KJ (2000) The CafA protein required for the 5′-maturation of 16 S rRNA is a 5′- end-dependent ribonuclease that has context-dependent broad sequence specificity. J Biol Chem 275:8726–8732

    Article  CAS  PubMed  Google Scholar 

  • Umitsuki G, Wachi M, Takada A, Hikichi T, Nagai K (2001) Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells 6:403–410

    Article  CAS  PubMed  Google Scholar 

  • Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the Emil and Wera Cornell Foundation. We thank Eliane Hajnsdorf for the RNase mutants and Lars Rutberg for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Rutberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambraeus, G., Rutberg, B. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner. Arch Microbiol 181, 137–143 (2004). https://doi.org/10.1007/s00203-003-0637-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0637-1

Keywords

Navigation