Archives of Microbiology

, Volume 181, Issue 1, pp 1–7 | Cite as

Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense

  • Dirk SchülerEmail author


The ability of magnetotactic bacteria (MTB) to orient and migrate along magnetic field lines is based on magnetosomes, which are membrane-enclosed intracellular crystals of a magnetic iron mineral. Magnetosome biomineralization is achieved by a process involving control over the accumulation of iron and deposition of the magnetic particle, which has a specific morphology, within a vesicle provided by the magnetosome membrane. In Magnetospirillum gryphiswaldense, the magnetosome membrane has a distinct biochemical composition and comprises a complex and specific subset of magnetosome membrane proteins (MMPs). Classes of MMPs include those with presumed function in magnetosome-directed uptake and binding of iron, nucleation of crystal growth, and the assembly of magnetosome membrane multiprotein complexes. Other MMPs comprise protein families of so far unknown function, which apparently are conserved between all other MTB. The mam and mms genes encode most of the MMPs and are clustered within several operons, which are part of a large, unstable genomic region constituting a putative magnetosome island. Current research is directed towards the biochemical and genetic analysis of MMP functions in magnetite biomineralization as well as their expression and localization during growth.


Magnetite biomineralization Magnetosome membrane Magnetotactic bacteria Magnetospirillum gryphiswaldense” 



Magnetosome membrane


Magnetosome membrane protein


Magnetotactic bacteria



I wish to acknowledge the continued collaboration and invaluable discussions with many colleagues. I am especially grateful to my coworkers and students of the Magneto-Lab at the Max Planck Institute for Marine Microbiology. Research in the author’s lab is supported by the Max Planck Gesellschaft, the Deutsche Forschungsgemeinschaft, and the Biofuture program of the German BMBF.


  1. Amann R, Rossello-Mora R, Schüler D (2000) Phylogeny and in situ identification of magnetotactic bacteria. In Biomineralization, pp. 47–60. Edited by E Baeuerlein. Weinheim: Wiley-VCHGoogle Scholar
  2. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–37CrossRefPubMedGoogle Scholar
  3. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–50CrossRefPubMedGoogle Scholar
  4. Balkwill D, Maratea D, BlakemoreR (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408PubMedGoogle Scholar
  5. Bäuerlein E (2000) Single magnetic crystals of magnetite (Fe3O4) synthesized in intracytoplasmic vesicles of Magnetospirillum gryphiswaldense. In: Baeuerlein E (ed) Biomineralization. Wiley-VCH, Weinheim, pp 61–80Google Scholar
  6. Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed Engl 42:614–41CrossRefPubMedGoogle Scholar
  7. Blakemore R (1975) Magnetotactic bacteria. Science 190:377–9PubMedGoogle Scholar
  8. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–9CrossRefPubMedGoogle Scholar
  9. Bochicchio B, Pepe A, Tamburro AM (2001) On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. Matrix Biol 20:243–50CrossRefPubMedGoogle Scholar
  10. Chung JJ, Shikano S, Hanyu Y, Li M (2002) Functional diversity of protein C-termini: more than zipcoding? Trends Cell Biol 12:146–50CrossRefPubMedGoogle Scholar
  11. Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–55PubMedGoogle Scholar
  12. Finan T (2002) Evolving insights: symbiosis islands and horizontal gene transfer. J Bacteriol 184:2855–2856CrossRefPubMedGoogle Scholar
  13. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000PubMedGoogle Scholar
  14. Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841PubMedGoogle Scholar
  15. Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4:522–9CrossRefPubMedGoogle Scholar
  16. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–82PubMedGoogle Scholar
  17. Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2003) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol (in press)Google Scholar
  18. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–79Google Scholar
  19. Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek D (2003) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB granule bound protein (phasin). (in press)Google Scholar
  20. Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544PubMedGoogle Scholar
  21. Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–22PubMedGoogle Scholar
  22. Matsunaga T, Tsujimura N, Okamura H, Takeyama H (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Communications 268:932–937CrossRefGoogle Scholar
  23. Moskowitz BM (1995) Biomineralization of magnetic minerals. Rev Geophysics 33:123–128Google Scholar
  24. Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J Biochemistry 118:23–27Google Scholar
  25. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–39CrossRefPubMedGoogle Scholar
  26. Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003:RE7Google Scholar
  27. Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–8CrossRefPubMedGoogle Scholar
  28. Okuda Y, Fukumori Y (2001) Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Lett 491:169–73PubMedGoogle Scholar
  29. Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102PubMedGoogle Scholar
  30. Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Monatsheft Chemie 133:737–759Google Scholar
  31. Schleifer K, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. System Appl Microbiol 14:379–385Google Scholar
  32. Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour M, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bact 185:5779–5790CrossRefPubMedGoogle Scholar
  33. Schüler D (2000) Characterization of the magnetosome membrane in Magnetospirillum gryphiswaldense. In Biomineralization, pp. 109–118. Edited by E Baeuerlein. Weinheim: Wiley-VCHGoogle Scholar
  34. Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307PubMedGoogle Scholar
  35. Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys IV 7:647–650Google Scholar
  36. Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162PubMedGoogle Scholar
  37. Schüler D, Frankel RB (1999) Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473PubMedGoogle Scholar
  38. Schüler D, Spring S, Bazylinski DA (1999) Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. System Appl Microbiol 22:466–471Google Scholar
  39. Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94PubMedGoogle Scholar
  40. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29Google Scholar
  41. Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–4CrossRefGoogle Scholar
  42. Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Env Microbiol 68:3663–72CrossRefGoogle Scholar
  43. Zurovec M, Sehnal F (2002) Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–47CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Max-Planck-Institute for Marine MicrobiologyBremenGermany

Personalised recommendations