Skip to main content
Log in

Repressed multidrug resistance genes in Streptomyces lividans

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5a–c.
Fig. 6a–c.

Similar content being viewed by others

Abbreviations

MDR :

Multidrug resistance

References

  • Ahmed M, Borsch CM, Taylor SS, Vazquez-Laslop N, Neyfakh AA (1994) A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J Biol Chem 269:28506–28513

    CAS  PubMed  Google Scholar 

  • Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 8:710–714

    Article  CAS  PubMed  Google Scholar 

  • August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    CAS  PubMed  Google Scholar 

  • Bechthold A, Sohng JK, Smith TM, Chu X, Floss HG (1995) Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Mol Gen Genet 248:610–620

    CAS  PubMed  Google Scholar 

  • Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166

    Article  CAS  PubMed  Google Scholar 

  • Blanc V, Salah-Bey K, Flocher M, Thompson CJ (1995) Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol Microbiol 17:989–999

    CAS  PubMed  Google Scholar 

  • Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–233

    CAS  PubMed  Google Scholar 

  • Cundliffe E (1992) Self-protection mechanisms in antibiotic producers. Ciba Foundation Symposium 171:199–214

    CAS  PubMed  Google Scholar 

  • Dairi T, Aisaka K, Katsumata R, Hasegawa M (1995) A self-defense gene homologous to tetracycline effluxing gene essential for antibiotic production in Streptomyces aureofaciens. Biosci Biotechnol Biochem 59:1835–1841

    CAS  PubMed  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    CAS  PubMed  Google Scholar 

  • Faust B, Hoffmeister D, Weitnauer G, Westrich L, Haag S, Schneider P, Decker H, Kunzel E, Rohr J, Bechthold A (2000) Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. Microbiology 146:147–154

    CAS  PubMed  Google Scholar 

  • Fernandez-Moreno MA, Carbo L, Cuesta T, Vallin C, Malpartida F (1998) A silent ABC transporter isolated from Streptomyces rochei F20 induces multidrug resistance. J Bacteriol 180:4017–4023

    CAS  PubMed  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    CAS  PubMed  Google Scholar 

  • Grinius L, Dreguniene, Goldberg EB, Liao C-H, Projan SJ (1992) A Staphylococcal multidrug resistance gene product is a membrane of a new protein family. Plasmid 27:119–129

    CAS  PubMed  Google Scholar 

  • Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA (1998) QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 273:18665–18673

    Article  CAS  PubMed  Google Scholar 

  • Grkovic S, Brown MH, Skurray RA (2002) Regulation of Bacterial Drug Export Systems. Microbiol Mol Biol Rev 66:671–701

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27 Suppl 1:S93–99

    Google Scholar 

  • Hopwood DA, Kieser T, Wright HM, Bibb MJ (1983) Plasmids, recombination, and chromosomal mapping in Streptomyces lividans 66. J Gen Microbiol 129:2257–2269

    CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Jack DL, Storms ML, Tchieu JH, Paulsen IT, Saier MHJ (2000) A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J Bacteriol 182:2311–2313

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Thompson CJ, Hopwood DA (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129:2703–2714

    CAS  PubMed  Google Scholar 

  • Kieser HM, Kieser T, Hopwood DA (1992) A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174:5496–5507

    CAS  PubMed  Google Scholar 

  • Kohler T, Pechere JC, Plesiat P (1999) Bacterial antibiotic efflux systems of medical importance. Cell Mol Life Sci 56:771–778

    Article  CAS  PubMed  Google Scholar 

  • Lee L-F, Chen CW (1998) Multidrug resistant genes in Streptomyces. Actinomycetology 12:148–152

    CAS  Google Scholar 

  • Lee L-F, Huang Y-J, Chen CW (1996) Two classes of ethidium-bromide-resistant mutants of Streptomyces lividans 66. Microbiology 142:1041-1047

    CAS  PubMed  Google Scholar 

  • Lee CK, Kamitani Y, Nihira T, Yamada Y (1999) Identification and in vivo functional analysis of a virginiamycin S resistance gene ( varS) from Streptomyces virginiae. J Bacteriol 181:3293–3297

    CAS  PubMed  Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2001) In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3:247–254

    CAS  PubMed  Google Scholar 

  • Liu W, Shen B (2000) Genes for production of the enediyne antitumor antibiotic C-1027 in Streptomyces globisporus are clustered with the cagA gene that encodes the C-1027 apoprotein. Antimicrob Agents Chemother 44:382–392

    Article  CAS  PubMed  Google Scholar 

  • Masaoka Y, Ueno Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2000) A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J Bacteriol 182:2307–2310

    Article  CAS  PubMed  Google Scholar 

  • Mazzariol A, Cornaglia G, Nikaido H (2000) Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to beta-lactams. Antimicrob Agents Chemother 44:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • McMurry L, Levy S (1998) Revised sequence of OtrB (tet347) tetracycline efflux protein from Streptomyces rimosus. Antimicrob Agents Chemother 42:3050

    CAS  PubMed  Google Scholar 

  • Miller PF, Sulavik MC (1996) Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli. Mol Microbiol 21:441–448

    CAS  PubMed  Google Scholar 

  • Neyfakh AA (1997) Natural functions of bacterial multidrug transporters. Trends Microbiol 5:309–313

    Article  CAS  PubMed  Google Scholar 

  • Neyfakh AA, Bidnenko VE, Chen LB (1991) Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 88:4781–4785

    CAS  PubMed  Google Scholar 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388

    CAS  PubMed  Google Scholar 

  • Nikaido H (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 27 Suppl 1:S32–41

    Google Scholar 

  • Ohki R, Murata M (1997) bmr3, a third multidrug transporter gene of Bacillus subtilis. J Bacteriol 179:1423–1427

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Brown MH, Dunstan SJ, Skurray RA (1995) Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol 177:2827–2833

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    PubMed  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Molec Microbiol 21:77–96

    CAS  Google Scholar 

  • Saier J, M. H., Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 12:265–274

    PubMed  Google Scholar 

  • Salah-Bey K, Blanc B, Thompson CJ (1995) Stress-activated expression of a Streptomyces pristinaespiralis multidrug resistance gene ( ptr) in various Streptomyces spp. and Escherichia coli. Mol. Microbiol. 17:1001–1012

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory , Cold Spring Harbor, New York

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163

    Article  CAS  PubMed  Google Scholar 

  • Takiff HE, Cimino M, Musso MC, Weisbrod T, Martinez R, Delgado MB, Salazar L, Bloom BR, Jacobs J, W. R. (1996) Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93:362–366

    Article  CAS  PubMed  Google Scholar 

  • Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46:3133–3141

    Article  CAS  PubMed  Google Scholar 

  • Tercero JA, Lacalle RA, Jimenez A (1993) The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. Eur J Biochem 218:963–971

    CAS  PubMed  Google Scholar 

  • van Veen HW, Konings WN (1998) The ABC family of multidrug transporters in microorganisms. Biochim Biophys Acta 1365:31–36

    PubMed  Google Scholar 

  • Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387

    CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    PubMed  Google Scholar 

  • Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270:6856–6863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by research grants from National Science Council (NSC90-2312-B010-002) and Ministry of Education (89-B-FA22–2-4), Taiwan (R.O.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carton W. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, LF., Huang, YJ. & Chen, C.W. Repressed multidrug resistance genes in Streptomyces lividans . Arch Microbiol 180, 176–184 (2003). https://doi.org/10.1007/s00203-003-0574-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0574-z

Keywords

Navigation