Skip to main content
Log in

Genetic analysis of bacteriophage λN-dependent antitermination suggests a possible role for the RNA polymerase α subunit in facilitating specific functions of NusA and NusE

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A role for the Escherichia coli RNA polymerase α subunit in transcription antitermination dependent on bacteriophage λ N protein has been previously inferred from the isolation of rpoA mutants that alter the efficiency of this process. This report describes studies on the efficiency of N-dependent transcription antitermination in a strain containing the rpoA341 mutation, which interferes with this process. The effect of mutations in genes coding for different Nus factors and/or plasmids overexpressing nus genes on bacteriophage λ development in an E. coli rpoA341 host was examined. In addition, the effect of overproduction of the N protein in these genetic backgrounds was assessed. Analogous bacterial strains were employed to measure the efficiency of the antitermination process using the lacZ reporter gene under control of the λ p R promoter, and containing the phage nutR region and the t R1 terminator between the promoter and lacZ. The experimental results suggest interactions between components of the N-antitermination complex, which have been established biochemically, as well as additional functional relationships within the complex. Furthermore, the results indicate that amino acid substitution in the α subunit C-terminal domain encoded by the rpoA341 mutation may specifically disrupt the function of the NusA and NusE proteins. During this analysis, it was also found that the E. coli nusA1 mutant exhibits a conditional lethal phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88:235–242

    CAS  PubMed  Google Scholar 

  • Court DL, Patterson TA, Baker T, Costantino N, Mao X, Friedman DI (1995) Structural and functional analyses of the transcription-translation proteins NusB and NusE. J Bacteriol 177:2589–2591

    CAS  PubMed  Google Scholar 

  • DeVito J, Das A (1994) Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci USA 91:8660–8664

    CAS  PubMed  Google Scholar 

  • Downing WL, Sullivan SL, Gottesman ME, Dennis PP (1990) Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J Bacteriol 172:1621–1627

    CAS  PubMed  Google Scholar 

  • Friedman DI, Court DL (1995) Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18:191–200

    CAS  PubMed  Google Scholar 

  • Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48:299–325

    CAS  PubMed  Google Scholar 

  • Gabig M, Obuchowski M, Ciesielska A, Latala B, Wegrzyn A, Thomas MS, Wegrzyn G (1998a) The Escherichia coli RNA polymerase α subunit and transcriptional activation by bacteriophage λ CII protein. Acta Biochim Pol 45:271–280

    CAS  PubMed  Google Scholar 

  • Gabig M, Obuchowski M, Wegrzyn A, Szalewska-Palasz A, Thomas MS, Wegrzyn G (1998b) Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates. Microbiology 144:2217–2224

    CAS  PubMed  Google Scholar 

  • Gibson TJ, Thompson JD, Heringa J (1993) The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Lett 324:361–366

    Article  CAS  PubMed  Google Scholar 

  • Gill SC, Weitzel SE, von Hippel PH (1991) Escherichia coli sigma 70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J Mol Biol 220:307–324

    CAS  PubMed  Google Scholar 

  • Gopal B, Haire LF, Gamblin SJ, Dodson EJ, Lane AN, Papavinasasundaram KG, Colston MJ, Dodson G (2001) Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution. J Mol Biol 314:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt J, Li J (1981) The nusA gene protein of Escherichia coli. Its identification and a demonstration that it interacts with the gene N transcription anti-termination protein of bacteriophage lambda. J Mol Biol 147:11–23

    CAS  PubMed  Google Scholar 

  • Greenblatt J, Nodwell JR, Mason SW (1993) Transcriptional antitermination. Nature 364:401–406

    CAS  PubMed  Google Scholar 

  • Gusarov I, Nudler E (1999) The mechanism of intrinsic transcription termination. Mol Cell 3:495–504

    CAS  PubMed  Google Scholar 

  • Gusarov I, Nudler E (2001) Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437–449

    CAS  PubMed  Google Scholar 

  • Horwitz, RJ, Li J, Greenblatt J (1987) An elongation control particle containing the N gene transcriptional antitermination protein of bacteriophage lambda. Cell 51:631–641

    CAS  PubMed  Google Scholar 

  • Legault P, Li J, Mogridge J, Kay L, Greenblatt J (1998) NMR structure of the bacteriophage λ N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93:289–299

    CAS  PubMed  Google Scholar 

  • Li J, Horwitz RJ, McCracken S, Greenblatt J (1992) NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J Biol Chem 267:6012–6019

    CAS  PubMed  Google Scholar 

  • Li J, Mason SW, Greenblatt J (1993) Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev 7:161–172

    CAS  PubMed  Google Scholar 

  • Liu K, Hanna MM (1995) NusA interferes with interactions between the nascent RNA and the C-terminal domain of the α subunit of RNA polymerase in Escherichia coli transcription complexes. Proc Natl Acad Sci USA 92:5012–5016

    CAS  PubMed  Google Scholar 

  • Liu K, Zhang Y, Severinov K, Das A, Hanna MM (1996) Role of Escherichia coli RNA polymerase α subunit in modulation of pausing, termination and anti-termination by the transcription elongation factor NusA. EMBO J 15:150–161

    PubMed  Google Scholar 

  • Mah TF, Li J, Davidson AR, Greenblatt J (1999) Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA. Mol Microbiol 34:523–537

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, Kuznedelov K, Mushegian A, Severinov K, Greenblatt J (2000) The αsubunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev 14:2664–2675

    Article  CAS  PubMed  Google Scholar 

  • Mason SW, Greenblatt J (1991) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5:1504–1512

    CAS  PubMed  Google Scholar 

  • Mason SW, Li J, Greenblatt J (1992a) Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10. J Mol Biol 223:55–66

    CAS  PubMed  Google Scholar 

  • Mason SW, Li J, Greenblatt J (1992b) Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda. J Biol Chem 267:19418–19426

    CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Mogridge J, Mah TF, Greenblatt J (1995) A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev 9:2831–2845

    CAS  PubMed  Google Scholar 

  • Mogridge J, Mah TF, Greenblatt J (1998) Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein. J Biol Chem 273:4143–4148

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Uchida H (1983) Isolation of conditionally lethal amber mutations affecting synthesis of the nusA protein of Escherichia coli. Mol Gen Genet 190:196–203

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Mizusawa S, Court DL, Tsugawa A (1986a) Regulatory defects of a conditionally lethal nusA ts mutant of Escherichia coli. Positive and negative modulator roles of NusA protein in vivo. J Mol Biol 189:103–111

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Mizusawa S, Tsugawa A, Imai M (1986b) Conditionally lethal nusA ts mutation of Escherichia coli reduces transcription termination but does not affect antitermination of bacteriophage lambda. Mol Gen Genet 204:24–28

    CAS  PubMed  Google Scholar 

  • Nodwell JR, Greenblatt J (1993) Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72:261–268

    CAS  PubMed  Google Scholar 

  • Nudler E, Gottesman ME (2002) Transcription termination and anti-termination in E. coli. Genes Cells 7:755–768

    Article  CAS  PubMed  Google Scholar 

  • Obuchowski M, Wegrzyn A, Szalewska-Palasz A, Thomas MS, Wegrzyn G (1997) An RNA polymerase α subunit mutant impairs N-dependent transcriptional antitermination in Escherichia coli. Mol Microbiol 23:211–22

    CAS  PubMed  Google Scholar 

  • Pasman Z, von Hippel PH (2000) Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry 39:5573–5585

    Article  CAS  PubMed  Google Scholar 

  • Patterson TA, Zhang Z, Baker T, Johnson LL, Friedman DI, Court DL (1994) Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. J Mol Biol 236:217–228

    Article  CAS  PubMed  Google Scholar 

  • Rees, WA, Weitzel SE, Yager TD, Das A, von Hippel PH (1996) Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc Natl Acad Sci USA 93:342–346

    Article  CAS  PubMed  Google Scholar 

  • Rowland GC, Giffard PM, Booth IR (1984) Genetic studies of the phs locus of Escherichia coli, a mutation causing pleiotropic lesions in metabolism and pH homeostasis. FEBS Lett 173:295–300

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Tsugawa A, Egawa K, Nakamura Y (1986) Revised sequence of the nusA gene of Escherichia coli and identification of nusA11 (ts) and nusA1 mutations which cause changes in a hydrophobic amino acid cluster. Mol Gen Genet 205:380–382

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schauer AT, Cheng SW, Zheng C, St Pierre L, Alessi D, Hidayetoglu DL, Costantino N, Court DL, Friedman DI (1996) The alpha subunit of RNA polymerase and transcription antitermination. Mol Microbiol 21:839–851

    CAS  PubMed  Google Scholar 

  • Shao X, Grishin NV (2002) Common fold in helix-hairpin-helix proteins. Nucleic Acids Res 28:2643–2650

    Article  Google Scholar 

  • Steiner T, Kaiser JT, Marinkovic S, Huber R, Wahl MC (2002) Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J 21:4641–4653

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SL, Gottesman ME (1992) Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68:989–994

    CAS  PubMed  Google Scholar 

  • Taura T, Ueguchi C, Shiba K, Ito K (1992). Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet 234:429–432

    CAS  PubMed  Google Scholar 

  • Thomas MS, Glass RE (1991) Escherichia coli rpoA mutation which impairs transcription of positively regulated systems. Mol Microbiol 5:2719–2725

    CAS  PubMed  Google Scholar 

  • Traviglia SL, Datwyler SA, Yan D, Ishihama A, Meares CF (1999) Targeted protein footprinting: where different transcription factors bind to RNA polymerase. Biochemistry 38:15774–15778

    Article  CAS  PubMed  Google Scholar 

  • Ward DF, DeLong A, Gottesman ME (1983) Escherichia coli nusB mutations that suppress nusA1 exhibit lambda N specificity. J Mol Biol 168:73–85

    CAS  PubMed  Google Scholar 

  • Wegrzyn G, Glass RE, Thomas MS (1992) Involvement of the Escherichia coli RNA polymerase α subunit in transcriptional activation by the bacteriophage lambda CI and CII proteins. Gene 122:1–7

    Article  CAS  PubMed  Google Scholar 

  • Weisberg RA, Gottesman ME (1999) Processive antitermination. J Bacteriol 181:359–367

    CAS  PubMed  Google Scholar 

  • Whalen W, Ghosh B, Das A (1988) NusA protein is necessary and sufficient in vitro for phage lambda N gene product to suppress a rho-independent terminator placed downstream of nutL. Proc Natl Acad Sci USA 85:2494–2498

    CAS  PubMed  Google Scholar 

  • Zheng C, Friedman DI (1994) Reduced Rho-dependent transcription termination permits NusA-independent growth of Escherichia coli. Proc Natl Acad Sci USA 91:7543–7547

    CAS  PubMed  Google Scholar 

  • Zhou Y, Mah TF, Yu YT, Mogridge J, Olson ER, Greenblatt J, Friedman DI (2001) Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. J Mol Biol 310:33–49

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Filter JJ, Court DL, Gottesman ME, Friedman DI (2002a) Requirement for NusG for transcription antitermination in vivo by the lambda N protein. J Bacteriol 184:3416–3418

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Mah TF, Greenblatt J, Friedman DI (2002b) Evidence that the KH RNA-binding domains influence the action of the E. coli NusA protein. J Mol Biol 318:1175–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish State Committee for Scientific Research (grant no. 3P04A04924 to G.W.) and the Wellcome Trust (grant 050794 to M.S.T.). G.W. also acknowledges financial support from the Foundation for Polish Science (subsidy 142000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szalewska-Pałasz, A., Strzelczyk, B., Herman-Antosiewicz, A. et al. Genetic analysis of bacteriophage λN-dependent antitermination suggests a possible role for the RNA polymerase α subunit in facilitating specific functions of NusA and NusE. Arch Microbiol 180, 161–168 (2003). https://doi.org/10.1007/s00203-003-0571-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0571-2

Keywords

Navigation