Skip to main content
Log in

Effect of growth conditions on the motility of Photorhabdus temperata

Archives of Microbiology Aims and scope Submit manuscript

Abstract

Photorhabdus temperata is a bioluminescent bacterium that lives in mutualistic association with entomopathogenic nematodes of the genus Heterorhabditis. The bacterium exists in two morphologically distinguishable phases (primary and secondary). The swimming behavior of P. temperata was investigated. Both the primary and secondary variants were able to swim in liquid or semisolid media under appropriate conditions. Variation in the oxygen levels had little affect on the chemotaxis and motility of the primary form, but greatly influenced the behavior of the secondary form. Under oxic conditions the secondary form was nonmotile, but motility was induced under anoxic conditions. Several phenotypic traits of the primary form were not expressed under anoxic conditions. The constituents of the growth media affected the motility of both variants. P. temperata required additional NaCl or KCl for optimum motility and chemotaxis. Optimal chemotactic behavior required the presence of bacto-peptone and yeast extract in the swim-migration medium. A mutant that was isolated from the secondary form was able to swim under oxic conditions and possessed an altered salt requirement for motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d.
Fig. 2a–d.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5a, b.
Fig. 6a, b.

References

  • Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91

    Google Scholar 

  • Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J Gen Microbiol 121:303–309

    Google Scholar 

  • Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065

    CAS  PubMed  Google Scholar 

  • Akhurst RJ, Smigielski AJ, Mari J, Boemare N, Mourant RG (1992) Restriction analysis of phase variation in Xenorhabdus spp. (Enterobacteriaceae) entomopathogenic bacteria associated with nematodes. Syst Appl Microbiol 15:469–473

    Google Scholar 

  • Blair DF (1995) How bacteria sense and swim. Annu Rev Microbiol 49:489–522

    Article  CAS  PubMed  Google Scholar 

  • Bleakley BH, Nealson KH (1988) Characterization of primary and secondary forms of Xenorhabdus luminescens strain Hm. FEMS Microbiol. Ecol. 53:241–250

    Google Scholar 

  • Bleakley BH, Chen X (1999) Survival of insect pathogenic and human clinical isolates of Photorhabdus luminescens in previously sterile soil. Can J Microbiol 45:273–278

    Article  CAS  PubMed  Google Scholar 

  • Boemare NE, Akhurst RJ (1988) Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761

    CAS  Google Scholar 

  • Boemare NE, Akhurst RJ, Mourant RG (1993) DNA relatedness between Xenorhabdus spp (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255

    Google Scholar 

  • Boemare N, Thaler J-O, Lanois A (1997) Simple bacteriological tests for phenotypic characterization of Xenorhabdus and Photorhabdus phase variants. Symbiosis 22:167–175

    Google Scholar 

  • Bowen DJ, Ensign JC (1998) Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 64:3029–3035

    CAS  PubMed  Google Scholar 

  • Bowen DJ, Ensign JC (2001) Isolation and characterization of intracellular protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 67:4834–4841

    Article  CAS  PubMed  Google Scholar 

  • Bowen D, Rocheleau T A, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132

    Article  CAS  PubMed  Google Scholar 

  • Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, ffrench-Constant RH (2000) Secreted proteases from Photorhabdus luminescens: Separation of the extracellular proteases from the insecticidal Tc toxin complexes. Insect Biochem Mol Biol 30:69–74

    Article  CAS  PubMed  Google Scholar 

  • Ciche TA, Bintrim SB, Horswill AR, Ensign JC (2001) A phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J Bacteriol 183:3117–3126

    Article  CAS  PubMed  Google Scholar 

  • Ehlers R-U, Stoessel S, Wyss U (1990) The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Revue Nématol 13:417–424

    Google Scholar 

  • Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656

    Google Scholar 

  • Forst S, Nealson K (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43

    CAS  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp: Bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen LJM, De Raay G, Smits PH (1992) Characterization of form variants of Xenorhabdus luminescens. Appl Environ Microbiol 58:1975–1979

    CAS  PubMed  Google Scholar 

  • Givaudan, A., Baghdiguian S, Lanois A, Boemare N (1995) Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol 61:1408–1413

    CAS  Google Scholar 

  • Griffin CT, Moore JF, Downes MJ (1991) Occurance of insect-parasitic nematodes (Steinernamatidae, Heterorhabditidae) in the Republic of Ireland. Nematologica 37:92–100

    Google Scholar 

  • Han R, Ehlers R-U (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiol Ecol 35:239–247

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Owen P, Nataro JP (1999) Molecular switches- the ON and OFF of bacterial phase variation. Mol Microbiol 33:919–932

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Webster JM (1998) In vitro and in vivo characterization of a small-colony variant of the primary form of Photorhabdus luminescens MD (Enterobacteriaceae). Appl Environ Microbiol 64:3214–3219

    CAS  PubMed  Google Scholar 

  • Krasomil-Osterfeld KC (1995) Influence of osmolarity on phase shift in Photorhabdus luminescens. Appl Environ Microbiol 61:3748–3749

    CAS  Google Scholar 

  • Krasomil-Osterfeld K (1997) Phase II variants of Photorhabdus luminescens are induced by growth in low-osmolarity medium. Symbiosis 22:155–165

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leclerc M-C, Boemare NE (1991) Plasmids and phase variation in Xenorhabdus spp. Appl Environ Microbiol 57:2597–2601

    CAS  PubMed  Google Scholar 

  • Owuama CI (2001) Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol 17:505–515

    Article  CAS  Google Scholar 

  • Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602–1605

    CAS  PubMed  Google Scholar 

  • Rosner BM, Ensign JC, Schink B (1996) Anaerobic metabolism of primary and secondary forms of Photorhabdus luminescens. FEMS Microbiol Lett 140:227–232

    Article  CAS  Google Scholar 

  • Schmidt TM, Beakley B, Nealson KH (1988) Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens. Appl Environ Microbiol 54:2793–2797

    CAS  Google Scholar 

  • Smigielski AJ, Akhurst RJ, Boemare NE (1994) Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: Differences in respiratory activity and membrane energization. Appl Environ Microbiol 60:120–125

    CAS  Google Scholar 

  • Volgyi A, Fodor A, Szentirmai A, Forst S (1998) Phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol 64:1188–1193

    CAS  Google Scholar 

  • Wang, H, Dowds BCA (1993) Phase variation in Xenorhabdus luminescens: cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium. J Bacteriol 175:1665–1673

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported in part by a grant from The University of New Hampshire Vice President for Research Discretionary Funds (LST) and by the College of Life Science and Agriculture, The University of New Hampshire-Durham. A Summer Undergraduate Research Fellowship from the University of New Hampshire-Durham supported MMH. This is scientific contribution number 2126 from the NH Agricultural Experiment Station. We thank Dave Bowen, Todd Ciche, and Jerald C. Ensign for the Photorhabdus strains; Alicia Pierson, Jessica McClure, Chris Rovaldi, Carmela T. Mascio, and Spiros Kapolis for their contributions in the initial stages of this project; Robert Mooney for his help with the photography; and Linda Stoxen for her help with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis S. Tisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgson, M.M., Day, B., White, D.J. et al. Effect of growth conditions on the motility of Photorhabdus temperata . Arch Microbiol 180, 17–24 (2003). https://doi.org/10.1007/s00203-003-0558-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0558-z

Keywords

Navigation