Skip to main content
Log in

Refined sinh cosh optimizer tuned controller design for enhanced stability of automatic voltage regulation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The efficacy of automatic voltage regulator (AVR) systems is contingent on crucial parameters like voltage regulation, response time, stability, and efficiency. Integration of controllers with AVR systems facilitates centralized monitoring and regulation, enhancing voltage output efficiency. This study employs a modified sinh cosh optimizer (m-SCHO) and a modified time-domain metrics-based objective function to fine-tune a fractional-order proportional-integral-derivative with double derivative (FOPIDD2) controller tailored for AVR system control. The m-SCHO is strengthened with an adaptive local search mechanism and an experience-based perturbed learning strategy and enhances solution diversity and navigational efficacy, leading to improved optimization quality. This investigation illustrates the superior performance of the m-SCHO-based FOPIDD2 controller in addressing the multifaceted challenges of AVR control, surpassing other techniques in stability, speed of response, robustness, and efficiency. To validate the method's efficacy, a comparative analysis is conducted using existing controllers with various tuning algorithms. Results indicate that the proposed m-SCHO-based FOPIDD2 controller achieves superior performance metrics, showcasing its capability. The study extends its scope by considering nineteen different controllers reported in the literature for a comprehensive comparison which also exhibits the best stability, further affirming its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statements

All data are presented within the paper.

References

  1. Mohd Tumari MZ, Ahmad MA, Suid MH, Hao MR (2023) An improved marine predators algorithm-tuned fractional-order PID controller for automatic voltage regulator system. Fractal Fractional 7:561. https://doi.org/10.3390/fractalfract7070561

    Article  Google Scholar 

  2. Mok R, Ahmad MA (2022) Fast and optimal tuning of fractional order PID controller for AVR system based on memorizable-smoothed functional algorithm. Eng Sci Technol Int J 35:101264. https://doi.org/10.1016/j.jestch.2022.101264

    Article  Google Scholar 

  3. Micev M, Ćalasan M, Oliva D (2021) Design and robustness analysis of an automatic voltage regulator system controller by using equilibrium optimizer algorithm. Comput Electr Eng 89:106930. https://doi.org/10.1016/j.compeleceng.2020.106930

    Article  Google Scholar 

  4. Duman S, Yörükeren N, Altaş İH (2016) Gravitational search algorithm for determining controller parameters in an automatic voltage regulator system. Turk J Electr Eng Comput Sci 24:2387–2400. https://doi.org/10.3906/elk-1404-14

    Article  Google Scholar 

  5. Micev M, Ćalasan M, Ali ZM et al (2021) Optimal design of automatic voltage regulation controller using hybrid simulated annealing—Manta ray foraging optimization algorithm. Ain Shams Eng J 12:641–657. https://doi.org/10.1016/j.asej.2020.07.010

    Article  Google Scholar 

  6. Gopi P, Mahdavi M, Alhelou HH (2023) Robustness and stability analysis of automatic voltage regulator using disk-based stability analysis. IEEE Open Access J Power Energy 10:689–700. https://doi.org/10.1109/OAJPE.2023.3344750

    Article  Google Scholar 

  7. Gong C (2019) Jaya algorithm-optimized PID controller for AVR system. In: Xhafa F, Patnaik S, Tavana M (eds) Advances in intelligent systems and computing. Springer International Publishing, Cham, pp 382–393

    Google Scholar 

  8. Bendjeghaba O (2014) Continuous firefly algorithm for optimal tuning of PID controller in AVR system. J Electr Eng 65:44–49. https://doi.org/10.2478/jee-2014-0006

    Article  Google Scholar 

  9. Celik E (2018) Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Comput Appl 30:1991–2002. https://doi.org/10.1007/s00521-017-3335-7

    Article  Google Scholar 

  10. Agwa A, Elsayed S, Ahmed M (2022) Design of optimal controllers for automatic voltage regulation using archimedes optimizer. Intell Autom Soft Comput 31:799–815. https://doi.org/10.32604/iasc.2022.019887

  11. Mosaad AM, Attia MA, Abdelaziz AY (2018) Comparative performance analysis of AVR controllers using modern optimization techniques. Electric Power Compon Syst 46:2117–2130. https://doi.org/10.1080/15325008.2018.1532471

    Article  Google Scholar 

  12. Munagala VK, Jatoth RK (2022) Improved fractional PIλDμ controller for AVR system using Chaotic Black Widow algorithm. Comput Electrical Eng 97:107600. https://doi.org/10.1016/j.compeleceng.2021.107600

  13. Mokeddem D, Mirjalili S (2020) Improved whale optimization algorithm applied to design PID plus second-order derivative controller for automatic voltage regulator system. J Chin Inst Eng 43:541–552. https://doi.org/10.1080/02533839.2020.1771205

    Article  Google Scholar 

  14. Izci D, Ekinci S, Zeynelgil HL (2023) Controlling an automatic voltage regulator using a novel Harris hawks and simulated annealing optimization technique. Advanced Control for Applications. https://doi.org/10.1002/adc2.121

    Article  Google Scholar 

  15. Fawwaz MA, Bingi K, Ibrahim R et al (2023) Design of PIDDα controller for robust performance of process plants. Algorithms 16:437. https://doi.org/10.3390/a16090437

    Article  Google Scholar 

  16. Can Ö, Andiç C, Ekinci S, Izci D (2023) Enhancing transient response performance of automatic voltage regulator system by using a novel control design strategy. Electr Eng 105:1993–2005. https://doi.org/10.1007/s00202-023-01777-8

    Article  Google Scholar 

  17. Izci D, Rizk-Allah RM, Snášel V, et al (2023) A novel control scheme for automatic voltage regulator using novel modified artificial rabbits optimizer. e-Prime Adv Electrical Eng Electronics Energy 6:100325. https://doi.org/10.1016/j.prime.2023.100325

  18. Çelik E, Durgut R (2018) Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Eng Sci Technol Int J 21:1104–1111. https://doi.org/10.1016/j.jestch.2018.08.006

    Article  Google Scholar 

  19. Gandhi R, Masikana SB, Sharma G, Çelik E (2023) Design and robustness analysis of multiple extended state observer based controller (MESOBC) for AVR of the power system. Int Trans Electrical Energy Syst 2023:1–15. https://doi.org/10.1155/2023/1869840

    Article  Google Scholar 

  20. Odili JB, Mohmad Kahar MN, Noraziah A (2017) Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization. PLoS ONE 12:e0175901. https://doi.org/10.1371/journal.pone.0175901

    Article  Google Scholar 

  21. Pradhan R, Majhi SK, Pati BB (2018) Design of PID controller for automatic voltage regulator system using Ant Lion Optimizer. World J Eng 15:373–387. https://doi.org/10.1108/WJE-05-2017-0102

    Article  Google Scholar 

  22. Çelik E (2023) IEGQO-AOA: information-exchanged gaussian arithmetic optimization algorithm with quasi-opposition learning. Knowl Based Syst 260:110169. https://doi.org/10.1016/j.knosys.2022.110169

    Article  Google Scholar 

  23. Çelik E, Öztürk N, Arya Y (2021) Advancement of the search process of salp swarm algorithm for global optimization problems. Expert Syst Appl 182:115292. https://doi.org/10.1016/j.eswa.2021.115292

    Article  Google Scholar 

  24. Çelik E (2020) A powerful variant of symbiotic organisms search algorithm for global optimization. Eng Appl Artif Intell 87:103294. https://doi.org/10.1016/j.engappai.2019.103294

    Article  Google Scholar 

  25. Çelik E, Öztürk N (2018) A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator. Soft comput 22:8011–8024. https://doi.org/10.1007/s00500-018-3432-2

    Article  Google Scholar 

  26. Altbawi SMA, Bin MAS, Jumani TA et al (2021) Optimal design of Fractional order PID controller based Automatic voltage regulator system using gradient-based optimization algorithm. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2021.07.009

    Article  Google Scholar 

  27. Bai J, Li Y, Zheng M et al (2023) A Sinh Cosh optimizer. Knowl Based Syst 282:111081. https://doi.org/10.1016/j.knosys.2023.111081

    Article  Google Scholar 

  28. Izci D, Ekinci S (2023) Fractional order controller design via gazelle optimizer for efficient speed regulation of micromotors. e-Prime Adv Electrical Eng Electronics Energy 6:100295. https://doi.org/10.1016/j.prime.2023.100295

  29. Tabak A (2021) Maiden application of fractional order PID plus second order derivative controller in automatic voltage regulator. Int Trans Electrical Energy Syst 31. https://doi.org/10.1002/2050-7038.13211

  30. Ekinci S, Demiroren A, Zeynelgil H, Hekimoğlu B (2020) An opposition-based atom search optimization algorithm for automatic voltage regulator system. J Faculty Eng Arch Gazi Univ 35:1141–1158. https://doi.org/10.17341/gazimmfd.598576

  31. Sikander A, Thakur P, Bansal RC, Rajasekar S (2018) A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Comput Electr Eng 70:261–274. https://doi.org/10.1016/j.compeleceng.2017.07.005

    Article  Google Scholar 

  32. Mosaad AM, Attia MA, Abdelaziz AY (2019) Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng J 10:755–767. https://doi.org/10.1016/j.asej.2019.07.004

    Article  Google Scholar 

  33. Ozgenc B, Ayas MS, Altas IH (2022) Performance improvement of an AVR system by symbiotic organism search algorithm-based PID-F controller. Neural Comput Appl 34:7899–7908. https://doi.org/10.1007/s00521-022-06892-4

    Article  Google Scholar 

  34. Panda S, Sahu BK, Mohanty PK (2012) Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. J Franklin Inst 349:2609–2625. https://doi.org/10.1016/j.jfranklin.2012.06.008

    Article  MathSciNet  Google Scholar 

  35. Elsisi M (2019) Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator. Neural Comput Appl 31:5017–5027. https://doi.org/10.1007/s00521-018-03995-9

    Article  Google Scholar 

  36. Moschos I, Parisses C (2022) A novel optimal PIλDND2N2 controller using coyote optimization algorithm for an AVR system. Eng Sci Technol Int J 26:100991. https://doi.org/10.1016/j.jestch.2021.04.010

    Article  Google Scholar 

  37. Paliwal N, Srivastava L, Pandit M (2021) Equilibrium optimizer tuned novel FOPID-DN controller for automatic voltage regulator system. Int Trans Electrical Energy Syst 31:e12930. https://doi.org/10.1002/2050-7038.12930

    Article  Google Scholar 

  38. Tang Y, Zhao L, Han Z et al (2016) Optimal gray PID controller design for automatic voltage regulator system via imperialist competitive algorithm. Int J Mach Learn Cybern 7:229–240. https://doi.org/10.1007/s13042-015-0431-9

    Article  Google Scholar 

  39. Al Gizi AJH, Mustafa MW, Al-geelani NA, Alsaedi MA (2015) Sugeno fuzzy PID tuning, by genetic-neutral for AVR in electrical power generation. Appl Soft Comput 28:226–236. https://doi.org/10.1016/j.asoc.2014.10.046

    Article  Google Scholar 

  40. Elsisi M, Tran M-Q, Hasanien HM et al (2021) Robust model predictive control paradigm for automatic voltage regulators against uncertainty based on optimization algorithms. Mathematics 9:2885. https://doi.org/10.3390/math9222885

    Article  Google Scholar 

  41. Izci D, Ekinci S (2022) An improved RUN optimizer based real PID plus second-order derivative controller design as a novel method to enhance transient response and robustness of an automatic voltage regulator. e-Prime Adv Electrical Eng Electronics Energy 2:100071. https://doi.org/10.1016/j.prime.2022.100071

  42. Dogruer T, Can MS (2022) Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Trans Inst Meas Control 44:1862–1873. https://doi.org/10.1177/01423312211066758

    Article  Google Scholar 

  43. Suid MH, Ahmad MA (2022) Optimal tuning of sigmoid PID controller using nonlinear sine cosine algorithm for the automatic voltage regulator system. ISA Trans 128:265–286. https://doi.org/10.1016/j.isatra.2021.11.037

    Article  Google Scholar 

  44. Li X, Wang Y, Li N et al (2017) Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. Int J Mach Learn Cybern 8:1595–1605. https://doi.org/10.1007/s13042-016-0530-2

    Article  Google Scholar 

  45. Ayas MS (2019) Design of an optimized fractional high-order differential feedback controller for an AVR system. Electr Eng 101:1221–1233. https://doi.org/10.1007/s00202-019-00842-5

    Article  Google Scholar 

  46. Gozde H (2020) Robust 2DOF state-feedback PI-controller based on meta-heuristic optimization for automatic voltage regulation system. ISA Trans 98:26–36. https://doi.org/10.1016/j.isatra.2019.08.056

    Article  Google Scholar 

  47. Ekinci S, Hekimoglu B, Kaya S (2018) Tuning of PID controller for AVR system using salp swarm algorithm. In: 2018 International conference on artificial intelligence and data processing (IDAP). IEEE, pp 1–6

  48. Ayas MS, Sahin E (2021) FOPID controller with fractional filter for an automatic voltage regulator. Comput Electr Eng 90:106895. https://doi.org/10.1016/j.compeleceng.2020.106895

    Article  Google Scholar 

  49. Padiachy V, Mehta U, Azid S et al (2022) Two degree of freedom fractional PI scheme for automatic voltage regulation. Eng Sci Technol Int J 30:101046. https://doi.org/10.1016/j.jestch.2021.08.003

    Article  Google Scholar 

  50. Elsisi M, Soliman M (2021) Optimal design of robust resilient automatic voltage regulators. ISA Trans 108:257–268. https://doi.org/10.1016/j.isatra.2020.09.003

    Article  Google Scholar 

  51. Paliwal N, Srivastava L, Pandit M (2022) Rao algorithm based optimal Multi-term FOPID controller for automatic voltage regulator system. Optim Control Appl Methods 43:1707–1734. https://doi.org/10.1002/oca.2926

    Article  Google Scholar 

  52. Ayas MS, Sahin AK (2023) A reinforcement learning approach to automatic voltage regulator system. Eng Appl Artif Intell 121:106050. https://doi.org/10.1016/j.engappai.2023.106050

    Article  Google Scholar 

  53. Lawal MJ, Hussein SU, Saka B et al (2023) Intelligent fuzzy-based automatic voltage regulator with hybrid optimization learning method. Sci Afr 19:e01573. https://doi.org/10.1016/j.sciaf.2023.e01573

    Article  Google Scholar 

  54. Rizk-Allah RM, Ekinci S, Izci D (2023) An improved artificial rabbits optimization for accurate and efficient infinite impulse response system identification. Decis Anal J 9:100355. https://doi.org/10.1016/j.dajour.2023.100355

    Article  Google Scholar 

  55. Ekinci S, Çetin H, Izci D, Köse E (2023) a novel balanced arithmetic optimization algorithm-optimized controller for enhanced voltage regulation. Mathematics 11:4810. https://doi.org/10.3390/math11234810

    Article  Google Scholar 

  56. Ekinci S, Can Ö, Izci D (2023) Controller design for automatic voltage regulator system using modified opposition-based weighted mean of vectors algorithm. Int J Modell Simul 1–18. https://doi.org/10.1080/02286203.2023.2274254

  57. Kramer O (2010) A review of constraint-handling techniques for evolution strategies. Appl Comput Intell Soft Comput 2010:1–11. https://doi.org/10.1155/2010/185063

    Article  Google Scholar 

  58. Wang L, Cao Q, Zhang Z et al (2022) Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 114:105082. https://doi.org/10.1016/j.engappai.2022.105082

    Article  Google Scholar 

  59. Gaing Z-L (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391. https://doi.org/10.1109/TEC.2003.821821

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by an internal grant project of VSB-Technical University of Ostrava (SGS project, grant number SP 2023/076).

Funding

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

DI: Supervision, Conceptualization, Methodology, Software, Investigation, Validation, Writing—Original draft preparation.RMRA: Writing—Original draft preparation, Visualization, Investigation.VS: Writing—Original draft preparation, Visualization, Investigation.SE: Writing—Original draft preparation, Visualization, Investigation.HM: Writing—Original draft preparation, Visualization, Investigation.MSD: Writing—Original draft preparation, Visualization, Investigation.MA: Writing—Original draft preparation, Visualization, Investigation.LA: Writing—Original draft preparation, Visualization, Investigation.

Corresponding author

Correspondence to Laith Abualigah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izci, D., Rizk-Allah, R.M., Snášel, V. et al. Refined sinh cosh optimizer tuned controller design for enhanced stability of automatic voltage regulation. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02344-5

Keywords

Navigation