Skip to main content
Log in

Optimization to controllability measure of the POD in DFIG-integrated power systems to improve small-signal stability margin considering the impact of pre-fault slip

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The power oscillation damper (POD) at the doubly-fed induction generator (DFIG) helps to damp the low-frequency oscillation (LFO) in the power system, but the damping effect is affected by the pre-fault slip (s|0|) under the overspeed mode. This paper investigates the relationship among the damping effect of the POD, the transfer function (TF) of the POD, and s|0|, and proposes a new optimization scheme to extend the allowable range of s|0|. At first, the controllability measure (CM) is introduced to quantify the damping effect of the POD, and the sensitivity model of the CM is newly derived to analyze the influence of s|0| and the TF on the damping effect. Then, the small-signal stability margin (SSSM) is defined by the allowable range of s|0| and applied to quantify the system stability influenced by both s|0| and the POD. By adding a new constraint to the eigenvalue sensitivity, the sensitivity model of the SSSM is derived. Lastly, based on the proposed sensitivity model, the interior point method is applied to solve the proposed optimization scheme to POD’s parameters and extend the allowable range of s|0|. Simulation results show that the CM of the POD is more sensitive to s|0| than the TF of the POD. Compared with the existing eigenvalue sensitivity-based optimization scheme, the proposed scheme has a better effect on the SSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CM:

Controllability measure

DFIG:

Doubly-fed induction generator

LFO:

Low frequency oscillation

MPPT:

Maximum power point tracking

POD:

Power oscillation damper

PSS:

Power system stabilizer

RSC, GSC:

Rotor-side and grid-side converters

SG:

Synchronous generator

SSSM:

Small-signal stability margin

TF:

Transfer function

WT:

Wind turbine

A :

State matrix

B, C, D :

Input, output, and feed-forward matrices

E :

Identity matrix

F, X :

Imbalanced term and unknowns of power flow

f, g :

Differential and algebraic equations

G :

Transfer function of the POD

J :

Jacobian matrix

K POD, T d, T h :

Parameters of the POD

M :

Controllability measure

P, Q :

Active and reactive powers

p :

Laplace operator

R, X :

Resistance, reactance

s :

Slip

υ w :

Wind speed

I, V, θ :

Current, magnitude and angle of voltage

x, h :

State and algebraic variables

y :

Output vector

α :

Parameter of interest

μ :

Coefficient of the pre-fault slip variation

δ, ω :

Power angle, angular speed

ρ :

Electromechanical loop participation ratio

λ, ξ, φ :

Eigenvalue, damping ratio, participation factor

Ψ, Φ :

Left and right eigenvectors

Δ:

Increment

Ref:

Reference value

:

Differential

n:

Iteration number

T:

Transpose

d, q, x, y:

Axis in direct/quadrature and x/y frames

In:

Input signal

M:

Mechanical parameter

M:

Magnetizing circuit

min, max:

Minimum and maximum values

S:

Stability margin

s, r, g:

Stator, rotor (or RSC), GSC

sys:

Power system except for DFIGs

*:

Critical mode

|0|:

Initial value

References

  1. O’ M, Malley (2022) Editorial: towards 100% renewable energy system. IEEE Trans Power Syst 37(4):3187–3189. https://doi.org/10.1109/TPWRS.2022.3178170

    Article  Google Scholar 

  2. Li S, Zhou H, Yan Y et al (2022) Reliability and sensitivity analysis of loop-designed security and stability control system in interconnected power system. Glob Energy Interconnect 5(5):501–511. https://doi.org/10.1016/j.gloei.2022.10.004

    Article  Google Scholar 

  3. Ogundairo O, Kamalasadan S, Nair A et al (2022) Oscillation damping of integrated transmission and distribution power grid with renewables based on novel measurement–based optimal controller. IEEE Trans Ind Appl 58(3):4181–4191. https://doi.org/10.1109/TIA.2022.3162565

    Article  Google Scholar 

  4. Amaral T, Gomes S, Borges C (2021) Reliability evaluation of bulk power systems with wind generation using small signal stability analysis. Int J Electr Power Energy Syst 129:106840. https://doi.org/10.1016/j.ijepes.2021.106840

    Article  Google Scholar 

  5. Li S (2021) Improvement to observability measures of LFO modes in power systems with DFIGs. Front Energy 15(2):539–549. https://doi.org/10.1007/s11708-019-0617-z

    Article  MathSciNet  Google Scholar 

  6. Abdeen M, Li H, Jing L (2020) Improved subsynchronous oscillation detection method in a DFIG–based wind farm interfaced with a series–compensated network. Int J Electr Power Energy Syst 119:105930. https://doi.org/10.1016/j.ijepes.2020.105930

    Article  Google Scholar 

  7. Liu X, McSwiggan D, Littler TB et al (2010) Measurement–based method for wind farm power system oscillations monitoring. IET Renew Power Gener 4(2):198–209. https://doi.org/10.1049/iet-rpg.2009.0110

    Article  Google Scholar 

  8. Slootweg JG, Kling WL (2003) The impact of large scale wind power generation on power system oscillations. Electr Power Syst Res 37(1):9–20. https://doi.org/10.1016/S0378-7796(03)00089-0

    Article  Google Scholar 

  9. Gurung N, Bhattarai R, Kamalasadan S (2020) Optimal oscillation damping controller design for large–scale wind integrated power grid. IEEE Trans Ind Appl 56(4):4225–4235. https://doi.org/10.1109/TIA.2020.2988432

    Article  Google Scholar 

  10. Edrah M, Zhao X, Hung W et al (2020) Effects of POD control on a DFIG wind turbine structural system. IEEE Trans Energy Convers 35(2):765–774. https://doi.org/10.1109/TEC.2020.2966181

    Article  Google Scholar 

  11. Rezaie H, Razmi H, Safari N, Doagou-Mojarrad H (2022) Dynamic environmental economic dispatch with an enhanced-accuracy probabilistic wind cost model. Electr Eng 104(6):4305–4319. https://doi.org/10.1007/s00202-022-01621-5

    Article  Google Scholar 

  12. Li S, Wang M (2021) A novel model of the lower active power limit (LAPL) of DFIG under overspeed mode. Int J Electr Power Energy Syst 125:106439. https://doi.org/10.1016/j.ijepes.2020.106439

    Article  Google Scholar 

  13. Zhao J, Lu X, Fu Y et al (2016) Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control. IEEE Trans Energy Convers 31(3):833–845. https://doi.org/10.1109/TEC.2016.2537539

    Article  Google Scholar 

  14. Shi X, Ruan G, Lu H et al (2023) Analysis of ultra–low frequency oscillation in hydro–dominant power system and suppression strategy by GPSS. IEEE Trans Ind Appl 59(3):2796–2806. https://doi.org/10.1109/TIA.2023.3237658

    Article  Google Scholar 

  15. Trevisan A, Fecteau M, Mendonca A et al (2021) Analysis of low frequency interactions of DFIG wind turbine systems in series compensated grids. Electr Power Syst Res 191:106845. https://doi.org/10.1016/j.epsr.2020.106845

    Article  Google Scholar 

  16. Yang S, Xiong L, Huang S et al (2022) Optimal node selection of damping controller for power systems with high wind power penetration. Int J Electr Power Energy Syst 136:107716. https://doi.org/10.1016/j.ijepes.2021.107716

    Article  Google Scholar 

  17. Surinkaew T, Ngamroo I (2016) Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Trans Sustain Energy 7(3):943–955. https://doi.org/10.1109/TSTE.2015.2508558

    Article  Google Scholar 

  18. Bhukya J, Mahajan V (2022) Optimization of controllers parameters for damping local area oscillation to enhance the stability of an interconnected system with wind farm. Int J Electr Power Energy Syst 119:105877. https://doi.org/10.1016/j.ijepes.2020.105877

    Article  Google Scholar 

  19. Abdelsalam A, Ahmed A, Diad A (2022) Trajectory sensitivity analysis–based systematic Q–matrix of DFIG with LQR auxiliary voltage and power compensation for oscillation damping. Int J Electr Power Energy Syst 135:107575. https://doi.org/10.1016/j.ijepes.2021.107575

    Article  Google Scholar 

  20. Gupta A, Verma K, Niazi K (2017) Dynamic impact analysis of DFIG–based wind turbine generators on low–frequency oscillations in power system. IET Gener Transm Distrib 11(18):4500–4510. https://doi.org/10.1049/iet-gtd.2017.0308

    Article  Google Scholar 

  21. Bhukya J, Mahajan V (2019) Mathematical modelling and stability analysis of PSS for damping LFOs of wind power system. IET Renew Power Gener 13(1):103–115. https://doi.org/10.1049/iet-rpg.2018.5555

    Article  Google Scholar 

  22. Li S, Zhang H, Li Y (2020) Optimization to POD parameters of DFIGs based on the 2nd order eigenvalue sensitivity of power systems. IET Gener Transm Distrib 15(7):1123–1135. https://doi.org/10.1049/gtd2.12090

    Article  Google Scholar 

  23. Li S, Zhang H (2021) Improved eigen–sensitivity with respect to transfer function of DFIG–PSS in wind power systems. Electr Power Compon Syst 48(16):1735–1746. https://doi.org/10.1080/15325008.2021.1906791

    Article  Google Scholar 

  24. Li C, Chiang H, Du Z (2018) Investigation of an effective strategy for computing small–signal security margins. IEEE Trans Power Syst 33(5):5437–5445. https://doi.org/10.1109/TPWRS.2018.2810229

    Article  Google Scholar 

  25. Parreiras T, Gomes S, Taranto G et al (2018) Closest security boundary for improving oscillation damping through generation redispatch using eigenvalue sensitivities. Electr Power Syst Res 160:119–127. https://doi.org/10.1016/j.epsr.2018.02.010

    Article  Google Scholar 

  26. Ma J, Wang S, Li Y et al (2015) Power system multi–parameter small signal stability analysis based on 2nd order perturbation theory. Int J Electr Power Energy Syst 67:409–416. https://doi.org/10.1016/j.ijepes.2014.12.021

    Article  Google Scholar 

  27. Mishra C (2021) Critical clearing time sensitivity for differential–algebraic power system model. IEEE Trans Power Syst 36(4):3153–3162. https://doi.org/10.1109/TPWRS.2020.3040625

    Article  Google Scholar 

  28. Pandit R, Infield D, Santos M (2023) Accounting for environmental conditions in data–driven wind turbine power models. IEEE Trans Sustain Energy 14(1):168–177. https://doi.org/10.1109/TSTE.2022.3204453

    Article  Google Scholar 

  29. Nie Y, Zhang Y, Zhao Y et al (2019) Wide–area optimal damping control for power systems based on the ITAE criterion. Int J Electr Power Energy Syst 106:192–200. https://doi.org/10.1016/j.ijepes.2018.09.036

    Article  Google Scholar 

  30. Li C, Cao Y, Duan C et al (2021) A feasible delay margin sensitivity analysis method. IEEE Trans Power Syst 36(3):2713–2716. https://doi.org/10.1109/TPWRS.2021.3060599

    Article  Google Scholar 

  31. Kundur P (1994) Power system stability and control. NEW York, USA: McGraw–Hill Press

  32. Li S (2022) Converter’s loading balance and stability verification for doubly–fed induction generator. CSEE J Power Energy Syst. https://doi.org/10.17775/CSEEJPES.2021.01260

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number 51877061).

Author information

Authors and Affiliations

Authors

Contributions

Shenghu Li developed the idea of the study and analysed the data. Diwen Tao completed the mathematical modelling and wrote the paper.

Corresponding author

Correspondence to Diwen Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Tao, D. Optimization to controllability measure of the POD in DFIG-integrated power systems to improve small-signal stability margin considering the impact of pre-fault slip. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02335-6

Keywords

Navigation