Skip to main content
Log in

Numerical simulations, design and modeling of methylammonium tin iodide halide-based single-junction perovskite solar cell

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Nowadays, methylammonium tin iodide \({{\text{MASnI}}}_{3}\) halide-based perovskite solar cells are engaging the research community, because of its unique properties like excellent light absorption, narrow band gap, etc. Until now, 7.1% highest power conversion efficiency (PCE) is reported for \({{\text{MASnI}}}_{3}\) perovskite solar cells (PSCs). The focus of the research is the design and analysis of lead-free tin-halide-based perovskite solar using SCAPS TCAD tool. Moreover, the proposed device is analyzed by consider some parameters such as absorber layer thickness, variations of different electron transport layer (ETL) and hole transport layer (HTL) and thickness variation of ETL and HTL. In this work, 12.76% highest power conversion efficiency is attained by the optimized device. Furthermore, the focused research work could be consider for climatic conditions analysis, fabrication opportunities and tandem applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

a(λ):

Absorption coefficient

ALT:

Absorber layer thickness

e :

Electrons

\({E}_{{\text{c}}}\) :

CE level

\({E}_{{\text{t}}}\) :

TE level

EBD:

Energy band diagram

e-h:

Electron hole pair

\({{\text{EF}}}_{{\text{n}}}\) :

Hole quasi-fermi level

\({{\text{EF}}}_{{\text{p}}}\) :

Electron quasi-fermi level

ETL:

Electron transport layer

ε :

Permittivity

\({\varepsilon }_{{\text{o}}}\) :

Permittivity of free space

FF:

Fill factor

h:

Holes

HTL:

Hole transport layer

G :

Generation rate

G(x):

Generation rate of e-h pairs

\({J}_{{\text{p}}}\) :

Hole current density

\({J}_{{\text{mpp}}}\) :

Max. current density

\({J}_{{\text{sc}}}\) :

Current density (Short Circuit)

\({{{J}}}_{{\text{n}}}\) :

Electron current density

n:

Free electrons

\({{{N}}}_{{\text{D}}}^{+}\) :

Ionized donor (doping)

\({{{N}}}_{{\text{D}}}^{+}\) :

Ionized acceptor (doping concentration)

\({{{N}}}_{{\text{t}}}\) :

DD in \(({{\text{cm}}}^{-3})/{\text{eV}}\)

\({{{N}}}_{{\text{peak}}}\) :

Energy density at the peak of the distribution in \(({{\text{cm}}}^{-3})/{\text{eV}}\)

\({{{N}}}_{{\text{tot}}}\) :

Total defect density \(({{\text{cm}}}^{-3})\)

\({{{N}}}_{{\text{phot}}}(\lambda , x)\) :

Photon flux

\({{{N}}}_{{\text{phot}}0}(\lambda )\) :

Incident photon flux

\({{\text{n}}}_{{\text{t}}}\) :

Trapped electrons

p:

Free holes

PCE:

Power conversion efficiency

PSC:

Perovskite solar cell

\({{\text{p}}}_{{\text{t}}}\) :

Trapped holes

PV:

Photovoltaics

q :

Electronic charge

\({R}_{{\text{back}}}(\lambda )\) :

Reflection at the back contact

\({R}_{{\text{int}}}\) :

Internal refection at front contact

SCAPS:

Solar cell capacitance simulator

TCAD:

Technology computer-aided design

\({T}_{{\text{front}}}(\lambda )\) :

Transmission of the front contact

\({U}_{{\text{n}}}\) :

Electron recombination rate

\({U}_{{\text{p}}}\) :

Hole recombination rate

\({\mu }_{{\text{n}}}\) :

Electron mobility

\({\mu }_{{\text{p}}}\) :

Hole mobility

\({V}_{{\text{mpp}}}\) :

Maximum open circuit voltage

\({V}_{{\text{oc}}}\) :

Open circuit voltage

Ψ :

EP

ѡG:

Width of GED (by default 6.0)

X :

Position in the layer

References

  1. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  Google Scholar 

  2. Wang P, Li F, Jiang KJ, Zhang Y, Fan H, Zhang Y, Song Y (2020) Ion exchange/insertion reactions for fabrication of efficient methylammonium tin iodide perovskite solar cells. Adv Sci 7(9):1903047

    Article  Google Scholar 

  3. Sharma S, Pandey R, Madan J, Sharma R (2021) Numerical simulation and proof of concept for performance assessment of Cesium based lead-free wide-bandgap halide solar cells. Opt Mater 111:110644

    Article  Google Scholar 

  4. Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovoltaics Res Appl 29(1):3–15

    Article  Google Scholar 

  5. Wang R, Mujahid M, Duan Y, Wang ZK, Xue J, Yang Y (2019) A review of perovskites solar cell stability. Adv Func Mater 29(47):1808843

    Article  Google Scholar 

  6. Wu C, Zhang Q, Liu Y, Luo W, Guo X, Huang Z, Ting H, Sun W, Zhong X, Wei S, Wang S (2018) The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci 5(3):1700759

    Article  Google Scholar 

  7. Liang PW, Chueh CC, Williams ST, Jen AKY (2015) Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv Energy Mater 5(10):1402321

    Article  Google Scholar 

  8. Sharma S, Pandey R, Madan J, Sharma R (2021) Optimization of mixed Sn and Pb perovskite solar cell in terms of transport layers and absorber layer thickness variation. In 2021 Devices for Integrated Circuit (DevIC) (pp. 633–636). IEEE.

  9. Pandey R, Sharma S, Madan J, Sharma R (2021) Numerical simulations of 22% efficient all-perovskite tandem solar cell utilizing lead-free and low lead content halide perovskites. J Micromech Microeng 32(1):014004

    Article  Google Scholar 

  10. Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Kanatzidis MG (2017) From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol Energy Mater Sol Cells 159:227–234

    Article  Google Scholar 

  11. Devi C, Mehra R (2019) Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). J Mater Sci 54(7):5615–5624

    Article  Google Scholar 

  12. Jain SM, Edvinsson T, Durrant JR (2019) Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Commun Chem 2(1):1–7

    Article  Google Scholar 

  13. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AW (2019) Solar cell efficiency tables (version 54). Progr Photovolt 27(7):565–575

    Article  Google Scholar 

  14. Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI (2020) Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512):108–112

    Article  Google Scholar 

  15. Rai S, Pandey BK, Dwivedi DK (2021) Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. J Phys Chem Solids 156:110168

    Article  Google Scholar 

  16. Saikia D, Bera J, Betal A, Sahu S (2022) Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt Mater 123:111839

    Article  Google Scholar 

  17. Singh NK, Agarwal A (2023) Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based perovskite solar cell: a numerical modelling approach. Opt Mater 139:113822

    Article  Google Scholar 

  18. Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532

    Article  Google Scholar 

  19. Burgelman M, Verschraegen J, Degrave S, Nollet P (2004) Modeling thin-film PV devices. Prog Photovolt Res Appl 12(2–3):143–153

    Article  Google Scholar 

  20. Burgelman M, Verschraegen J, Minnaert B, Marlein J (2007) Numerical simulation of thin film solar cells: practical exercises with SCAPS. In Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), Gent. 2007. UGent & Academia Press

  21. Shah SAA, Sayyad MH, Khan K, Guo K, Shen F, Sun J, Tareen AK, Gong Y, Guo Z (2020) Progress towards high-efficiency and stable tin-based perovskite solar cells. Energies 13(19):5092

    Article  Google Scholar 

  22. Dixit H, Punetha D, Pandey SK (2019) Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179:969–976

    Article  Google Scholar 

  23. Peng L, Xie W (2020) Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3. RSC Adv 10(25):14679–14688

    Article  Google Scholar 

  24. Pandey R, Khanna A, Singh K, Patel SK, Singh H, Madan J (2020) Device simulations: Toward the design of> 13% efficient PbS colloidal quantum dot solar cell. Sol Energy 207:893–902

    Article  Google Scholar 

  25. Madan J, Pandey R, Sharma R (2020) Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol Energy 197:212–221

    Article  Google Scholar 

  26. Sharma S, Madan J, Pandey R, Sharma R (2021) Design and optimization of low lead content-based mixed Sn and Pb perovskite solar cell for 19.46% efficiency. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (pp. 2116–2118). IEEE.

  27. Sobayel K, Akhtaruzzaman M, Rahman KS, Ferdaous MT, Al-Mutairi ZA, Alharbi HF, Amin N (2019) A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Res Phys 12:1097–1103

    Google Scholar 

  28. Burgelman M (2019) SCAPS manual. In: Burgelman M (ed) Ghent University. Ghent University, Belgium, p 135

    Google Scholar 

Download references

Funding

There is no funding available for this research in any form.

Author information

Authors and Affiliations

Authors

Contributions

SS, KK, RKP, PK, ASSV, BK and AA wrote the main manuscript text. SS, KK, RKP, PK, ASSV, BK and AA prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Baseem Khan.

Ethics declarations

Conflict of interest

There is no competing interest of any author in any form.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, K., Pachuari, R.K. et al. Numerical simulations, design and modeling of methylammonium tin iodide halide-based single-junction perovskite solar cell. Electr Eng 106, 1225–1239 (2024). https://doi.org/10.1007/s00202-023-02166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-02166-x

Keywords

Navigation