Skip to main content
Log in

Hybrid controller configuration for master–slave paralleling of DC–DC converters with improved sliding manifold

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on sliding mode controller (SMC)-based master–slave parallel operation of DC–DC converters using a modified sliding manifold to achieve a fast dynamic response and very low steady-state error. The converter performance is analyzed in a novel way starting from a simple case of paralleling of two converters and then concept is extended for parallel operation of multiple converters. An investigation of the choice of the sliding surface on the performance of parallel converter is carried out in detail, and a mathematical design guideline for sliding coefficients for the proposed manifold for the master converter is derived to achieve stable operation. The proposed manifold ensures an improved dynamic response with an excellent steady-state accuracy in stand-alone mode. However, when it is incorporated with master–slave control for parallel operation with finite tie wire impedance, there is a degradation in the steady-state accuracy. In order to improve the steady-state performance of the sliding mode controller, two new hybrid (SMC + PI) controllers are proposed and implemented for parallel connected DC–DC converters. Finally, the proposed SMC techniques are verified through simulation study and through a scaled down experimental (laboratory) prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi B (1998) Comparative study on paralleling schemes of converter modules for distributed power applications. IEEE Trans Ind Electron 45(2):194–199

    Article  Google Scholar 

  2. Liu Y, Han Y, Lin C, Yang P, Wang C (2019) Design and implementation of droop control strategy for DC microgrid based on multiple DC/DC converters. In: Proceedings of IEEE ISGT, Chengdu, China, pp 3896–3901

  3. Ali S, Shengxue T, Jianyu Z, Ali A, Nawaz A (2019) An implementation of parallel buck converters for common load sharing in DC microgrid. Information 10:91

    Article  Google Scholar 

  4. Wang JB (2012) Parallel DC/DC converters system with a novel primary droop current sharing control. IET Power Electron 5(8):1569–1580

    Article  Google Scholar 

  5. Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66

    Article  Google Scholar 

  6. Lai YM, Tan S-C, Tsang YM (2009) Wireless control of load current sharing information for parallel-connected DC/DC power converters. IET Power Electron 2(1):14–21

    Article  Google Scholar 

  7. Rezkallah M, Sharma SK, Chandra A, Singh B, Rousse DR (2017) Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Trans Ind Electron 64(1):785–795

    Article  Google Scholar 

  8. Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428

    Article  Google Scholar 

  9. Altin N, Ozdemir S, Komurcugil H, Sefa I (2019) Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters. IEEE Trans Ind Electron 66(4):2903–2913

    Article  Google Scholar 

  10. Ling R, Shu Z, Hu Q, Song Y (2018) Second-order sliding-mode controlled three-level buck DC–DC converters. IEEE Trans Ind Electron 65(1):898–906

    Article  Google Scholar 

  11. Bagheri F, Komurcugil H, Kukrer O, Guler N, Bayhan S (2020) Multi-input multi-output-based sliding-mode controller for single-phase quasi-Z-source inverters. IEEE Trans Ind Electron 67(8):6439–6449

    Article  Google Scholar 

  12. He Y, Luo FL (2006) Sliding-mode control for DC–DC converters with constant switching frequency. Proc IEE Control Theory Appl 153(1):37–45

    Article  Google Scholar 

  13. Petronijevic MP, Milosavljevic C, Veselic B et al (2021) Robust cascade control of electrical drives using discrete-time chattering-free sliding mode controllers with output saturation. Electr Eng 103:2181–2195

    Article  Google Scholar 

  14. Goudarzian A, Khosravi A, Abjadi NR (2020) Input-output current regulation of Zeta converter using an optimized dual-loop current controller. Electr Eng 102:279–291

    Article  Google Scholar 

  15. Al Zawaideh A, Boiko IM (2022) Analysis of stability and performance of a cascaded PI sliding-mode control DC–DC boost converter via LPRS. IEEE Trans Power Electron 37(9):10455–10465

    Article  ADS  Google Scholar 

  16. Tan S-C, Lai YM, Tse CK (2005) Design of PWM based sliding mode voltage controller for DC–DC converters operating in continuous conduction mode. Proc ECPEA, Dresden, pp 1–10

  17. Jazi HN, Goudarzian A, Pourbagher R, Derakhshandeh SY (2017) PI and PWM sliding mode control of POESLL converter. IEEE Trans Aerospace Electron Syst 53(5):2167–2177

    Article  ADS  Google Scholar 

  18. Mohanty PR, Panda AK (2017) Fixed-frequency sliding-mode control scheme based on current control manifold for improved dynamic performance of boost PFC converter. IEEE J Emerg Sel Top Power Electron 5(1):576–586

    Article  Google Scholar 

  19. Chincholkar SH, Jiang W, Chan C-Y (2018) An improved PWM-based sliding-mode controller for a DC–DC cascade boost converter. IEEE Trans Circ Syst II Express Briefs 65(11):1639–1643

    Google Scholar 

  20. Tan S, Lai YM, Tse CK (2008) Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans Power Electron 23(2):600–611

    Article  ADS  Google Scholar 

  21. Chincholkar SH, Chan C-Y (2017) Design of fixed-frequency pulsewidth-modulation-based sliding-mode controllers for the quadratic boost converter. IEEE Trans Circ Syst II Express Briefs 64(1):51–55

    Google Scholar 

  22. Cao J, Chen Q, Zhang L, Quan S (2018) Sliding mode control of bidirectional DC/DC converter. In: Proceedings of YAC, Nanjing, pp 717–721

  23. Tan S-C, Lai Y-M, Tse CK (2011) Sliding mode control of switching power converters. CRC Press, Cambridge

    Google Scholar 

  24. Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428

    Article  Google Scholar 

  25. Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66

    Article  Google Scholar 

  26. Rajagopalan J, Xing K, Guo Y, Lee FC, Manners B (1996) Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control. In: Proceedings of APEC, CA, pp 678–684

  27. Verma V, Talpur GG (2012) Decentralized master–slave operation of microgrid using current controlled distributed generation sources. In: Proceedings of IEEE PEDES, Bengaluru, pp 1–6

  28. Chiang H-C, Jen K-K, You G-H (2016) Improved droop control method with precise current sharing and voltage regulation. IET Power Electron 9:789–800

    Article  Google Scholar 

  29. Augustine S, Mishra MK, Lakshminarasamma N (2015) Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Trans Sustain Energy 6(1):132–141

  30. Sadabadi MS (2021) A distributed control strategy for parallel DC–DC converters. IEEE Control Syst Lett 5(4):1231–1236

    Article  MathSciNet  Google Scholar 

  31. Renaudineau H et al (2014) Efficiency optimization through current-sharing for paralleled DC–DC boost converters with parameter estimation. IEEE Trans Power Electron 29(2):759–767

  32. Chen S-Y, Yang B-C, Pu T-A, Chang C-H, Lin R-C (2019) Active current sharing of a parallel DC–DC converters system using bat algorithm optimized two-DOF PID control. IEEE Access 7:84757–84769

    Article  Google Scholar 

  33. Du H, Jiang C, Wen G, Zhu W, Cheng Y (2019) Current sharing control for parallel DC–DC buck converters based on finite-time control technique. IEEE Trans Ind Inform 15(4):2186–2198

    Article  Google Scholar 

  34. Chen H-C, Lu C-Y, Rout US (2018) Decoupled master–slave current balancing control for three-phase interleaved boost converters. IEEE Trans Power Electron 33(5):3683–3687

    Article  ADS  Google Scholar 

  35. Long R, Quan S, Zhang L, Chen Q, Zeng C, Ma L (2015) Current sharing in parallel fuel cell generation system based on model predictive control. Int J Hydro Energy 40(35):11587–11594

    Article  CAS  Google Scholar 

  36. Tomescu B, Vanlandingham HF (1999) Improved large-signal performance of paralleled DC–DC converters current sharing. IEEE Trans Power Electron 14(3):573–577

    Article  ADS  Google Scholar 

  37. Keller G, Lascu D, Myrzik JMA (2005) State-space control structures for buck converters with/without input filter. In: Proceedings of ECPEA, Dresden, pp 1–10

  38. Repecho V, Biel D, Ramos-Lara R, Vega PG (2018) Fixed-switching frequency interleaved sliding mode eight-phase synchronous buck converter. IEEE Trans Power Electron 33(1):676–688

    Article  ADS  Google Scholar 

  39. Li M, Tse CK, Iu HHC, Ma X (2010) Unified equivalent modeling for stability analysis of parallel-connected DC/DC converters. IEEE Trans Circ Syst II Express Briefs 57(11):898–902

    ADS  Google Scholar 

  40. Repecho V, Biel D, Ramos-Lara R (2020) Robust ZAD sliding mode control for an 8-phase step-down converter. IEEE Trans Power Electron 35(2):2222–2232

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TRB, GS and DD designed the proposal. TRB, GS did the analysis, simulation and experimental studies and prepared the manuscript documentations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dipankar De.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burle, T.R., Satpathy, G. & De, D. Hybrid controller configuration for master–slave paralleling of DC–DC converters with improved sliding manifold. Electr Eng 106, 79–91 (2024). https://doi.org/10.1007/s00202-023-01976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01976-3

Keywords

Navigation