Skip to main content
Log in

Extraction of partial discharge signal in predominant VHF range in the presence of strong noise in power transformer

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

To accurately determine the strength and the waveform of the partial discharge (PD) signal, especially if the source position is far from the ultra-high frequency (UHF) sensor or if the signal is weak, it is necessary to properly extract the most prominent PD from the background noise in the recorded signal. This paper provides a new procedure for the extraction of PD signal in the predominant very high frequency (VHF) range from the strong noise in each of the signals recorded online and onsite using the UHF sensor in the power transformer during its normal operation in a thermal power plant. A standard UHF drain valve sensor was used with good sensitivity in the high frequency and VHF bands. First, it is necessary to determine as precisely as possible the period in which the most prominent PD occurs in the middle part of each signal. Second, it is to compare the frequency spectra of the dominant, strong noise in the left and right parts in relation to the corresponding middle part of each recorded signal. And third, it is to extract the PD with the largest amplitudes from the estimated noise in the middle part of each recorded signal by finding the cutoff frequency and performing high-pass filtering in MATLAB. The new criterion for cutoff frequency is that there are no time shifts of the first peaks of the most prominent PD of each recorded signal. The results show some obvious similarities of PDs in the recorded signals, such as frequency range, duration, repetition rate, and the same dominant frequency, which sufficiently indicates that it is the same type of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Beura CP, Beltle M, Tenbohlen S, Siegel M (2019) Quantitative analysis of the sensitivity of uhf sensor positions on a 420 kV power transformer based on electromagnetic simulation. Energies 13(1):3:1-17. https://doi.org/10.3390/en13010003

    Article  Google Scholar 

  2. Dukanac D (2021) Analysis of partial discharge signal detected by a UHF sensor in the power transformer. In: 3rd CIGRE SEERC Online-Conference, 1189:1–9. https://e-cigre.org/publication/collaut2021-seerc-colloquium-2021

  3. Yaacob MM, Alsaedi MA, Rashed JR, Dakhil AM, Atyah SF (2014) Review on partial discharge detection techniques related to high voltage power equipment using different sensors. Photonic Sens 4(4):325–337. https://doi.org/10.1007/s13320-014-0146-7

    Article  Google Scholar 

  4. Judd MD (2013) Partial discharge detection and location in transformers using UHF techniques. In: Su CQ (ed) Electromagnetic transients in transformer and rotating machine windings. IGI Global, Hershey, Pennsylvania, pp 487–520

    Chapter  Google Scholar 

  5. Robles G, Albarracín R, Vázquez JL (2016) Antennas in partial discharge sensing system. In: Chen ZN, Liu D, Nakano H, Qing X, Zwick T (eds) Handbook of antenna technologies. Springer Verlag, Singapore, pp 2419–2474

    Chapter  Google Scholar 

  6. Raja K, Devaux F, Lelaidier S (2002) Recognition of discharge sources using UHF PD signatures. IEEE Electr Insul Mag 18(5):8–14. https://doi.org/10.1109/MEI.2002.1044316

    Article  Google Scholar 

  7. Kunicki M, Cichoń A, Nagi Ł (2018) Statistics based method for partial discharge identification in oil paper insulation systems. Electr Power Syst Res 163(B):559–571. https://doi.org/10.1016/j.epsr.2018.01.007

    Article  Google Scholar 

  8. Mor AR, Heredia LCC, Harmsen DA, Muñoz FA (2018) A new design of a test platform for testing multiple partial discharge sources. Int J Electr Power Energy Syst 94:374–384. https://doi.org/10.1016/j.ijepes.2017.07.013

    Article  Google Scholar 

  9. Yadav KS, Sarathi R (2015) Influence of thermally aged barrier on corona discharge activity in transformer oil under AC voltages. IEEE Trans Dielectr Electr Insul 22(5):2415–2423. https://doi.org/10.1109/TDEI.2015.004816

    Article  Google Scholar 

  10. Zhang Y, Tang J, Pan C, Luo X (2019) Comparison of PD and breakdown characteristics induced by metal particles and bubbles in flowing transformer oil. IEEE Access 7(48098–4810):8. https://doi.org/10.1109/ACCESS.2019.2910081

    Article  Google Scholar 

  11. Tyuftyaev AS, Gadzhiev MKh, Sargsyan MA, Akimov PL, Demirov NA (2016) The effect of gas bubbles on electrical breakdown in transformer oil. J Phys Conf Ser 774:1–6. https://doi.org/10.1088/1742-6596/774/1/012202/pdf

    Article  Google Scholar 

  12. Zhou J, Tang J, Zhang X, Liu F (2013) Partial discharge ultra high frequency measurement system for suspended movable bubble defect in transformer. Przegląd Elektrotechniczny 2013(1a):207–210

    Google Scholar 

  13. Tenbohlen S, Denissov D, Hoek SM, Markalous SM (2008) Partial discharge measurement in the ultra-high frequency (UHF) range. IEEE Trans Dielectr Electr Insul 15(6):1544–1552. https://doi.org/10.1109/TDEI.2008.4712656

    Article  Google Scholar 

  14. Shams MA, Anis HI, El-Shahat M (2021) Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform. Energies 14(20):6540:1-6622. https://doi.org/10.3390/en14206540

    Article  Google Scholar 

  15. Drexler P, Čáp M, Fiala P, Steinbauer M, Kadlec R, Kaška M, Kočiš L (2019) A sensor system for detecting and localizing partial discharges in power transformers with improved immunity to interferences. Sensors 19(4):9231–9321. https://doi.org/10.3390/s19040923

    Article  Google Scholar 

  16. Hussain MR, Refaat SS, Abu-Rub H (2021) Overview and partial discharge analysis of power transformers: a literature review. IEEE Access 9:64587–64605. https://doi.org/10.1109/ACCESS.2021.3075288

    Article  Google Scholar 

  17. Li X, Wang Z, Wang X, Rong M, Liu D (2020) Chromatic processing for feature extraction of PD-induced UHF signals in GIS. Global Energy Interconnect 3(5):494–503. https://doi.org/10.1016/j.gloei.2020.11.009

    Article  Google Scholar 

  18. Robles G, Fresno JM, Martínez-Tarifa JM, Ardila-Rey JA, Parrado-Hernández E (2018) Partial discharge spectral characterization in HF, VHF and UHF bands using particle swarm optimization. Sensors 18(3):746:1-819. https://doi.org/10.3390/s18030746

    Article  Google Scholar 

  19. Fresno JM, Ardila-Rey JA, Martínez-Tarifa JM, Robles G (2017) Partial discharges and noise separation using spectral power ratios and genetic algorithms. IEEE Trans Dielectr Electr Insul 24(1):31–38. https://doi.org/10.1109/TDEI.2016.005898

    Article  Google Scholar 

  20. Ardila-Rey JA, Martínez-Tarifa JM, Robles G, Rojas-Moreno MV (2013) Partial discharge and noise separation by means of spectral-power clustering techniques. IEEE Trans Dielectr Electr Insul 20(4):1436–1443. https://doi.org/10.1109/TDEI.2013.6571466

    Article  Google Scholar 

  21. Jia R, Xie Y, Wu H, Dang J, Dong K (2016) Power transformer partial discharge fault diagnosis based on multidimensional feature region. Math Probl Eng 4835694:1–12. https://doi.org/10.1155/2016/4835694

    Article  Google Scholar 

  22. Bajwa AA, Habib S, Kamran M (2015) An investigation into partial discharge pulse extraction methods. Electr Power Energy Syst 73:964–982. https://doi.org/10.1016/j.ijepes.2015.06.028

    Article  Google Scholar 

  23. Ardila-Rey JA, Cerda-Luna MP, Rozas-Valderrama RA, de Castro BA, Luiz AA, Muhammad-Sukki F (2020) Separation techniques of partial discharges and electrical noise sources: a review of recent progress. IEEE Access 8:199449–199461. https://doi.org/10.1109/ACCESS.2020.3035249

    Article  Google Scholar 

  24. Khavari E, Hosseini SMH, Gharehpetian GB (2020) Recovery of partial discharge signal and noise cancellation in power transformer using radial basis function. IEEE Trans Instrum Meas 69(6):3388–3394. https://doi.org/10.1109/TIM.2019.2938054

    Article  Google Scholar 

  25. Wu H, Xie Y, Jia R, Peng Q, Dang J (2017) Transformer partial discharge signal reconstruction and feature extraction method based on time-frequency matrix. IEEJ Trans Electr Electron Eng 12(S1):S13–S19. https://doi.org/10.1002/tee.22419

    Article  Google Scholar 

  26. Shang H, Lo KL, Li F (2017) Partial Discharge Feature Extraction Based on Ensemble Empirical Mode Decomposition and Sample Entropy. Entropy 19(9):439:1-519. https://doi.org/10.3390/e19090439

    Article  Google Scholar 

  27. Soh D, Krishnan SB, Abraham J, Xian LK, Jet TK, Yongyi JF (2022) Partial discharge diagnostics: data cleaning and feature extraction. Energies 15(2):508:1-512. https://doi.org/10.3390/en15020508

    Article  Google Scholar 

  28. Xiaoxin C, Lin Z, Shaoan W, Xiang S, Ping Q (2020) A study on the extraction method of partial discharge features in gas insulated switchgear based on ultra-high frequency signal envelope. J Phys Conf Ser 1659(012061):1–7. https://doi.org/10.1088/1742-6596/1659/1/012061

    Article  Google Scholar 

  29. Thuc VC, Lee HS (2022) Partial discharge (PD) signal detection and isolation on high voltage equipment using improved complete EEMD method. Energies 15(16):58191–58217. https://doi.org/10.3390/en15165819

    Article  Google Scholar 

  30. Zhang J, He J, Long J, Yao M, Zhou W (2019) A new denoising method for UHF PD signals using adaptive VMD and SSA-based shrinkage method. Sensors 19(7):1594:1-1623. https://doi.org/10.3390/s19071594

    Article  Google Scholar 

  31. Dhandapani R, Mitiche I, McMeekin S, Mallela VS, Morison G (2021) Enhanced partial discharge signal denoising using dispersion entropy optimized variational mode decomposition. Entropy 23(12):1567:1-1623. https://doi.org/10.3390/e23121567

    Article  MathSciNet  Google Scholar 

  32. Dukanac D (2018) Application of UHF method for partial discharge source location in power transformers. IEEE Trans Dielectr Electr Insul 25(6):2266–2278. https://doi.org/10.1109/TDEI.2018.006996

    Article  Google Scholar 

  33. Dukanac Đ (2020) Detection and analysis of a partial discharge signal in the power transformer using UHF method (in Serbian). Energy Econ Ecol 1–2(XXII):96–101. https://doi.org/10.46793/EEE20-1-2.096D

    Article  Google Scholar 

  34. MS 3000 Holistic Transformer Monitoring Solution (2016) GE https://www.gegridsolutions.com/products/brochures/ms3000_gea-31984_a4_hr.pdf Accessed on 19 Apr 2023

  35. Coenen S (2015) Trends in continuous on-line condition monitoring. Trans Mag 2(3):55–59

    Google Scholar 

  36. Chai H, Phung BT, Mitchell S (2019) Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors 19(5):1029:1-1123. https://doi.org/10.3390/s19051029

    Article  Google Scholar 

  37. UHF-DN50/80 (2020) Ultra-High Frequency (UHF) Partial Discharge (PD) Drain Valve Sensor. BSS Hochspannungs-technik GmbH. https://www.bss-hochspannungstechnik.de/pdf/Datasheet%20UHF-DN5080.pdf Accessed on 19 Apr 2023

  38. MONTESTO 200 Portable system for temporary on-line partial discharge monitoring and measurement for various electrical assets (2022) UVS 610 drain valve sensor. Omicron. https://www.omicronenergy.com/en/products/uvs-610/#documents Accessed on 19 Apr 2023

  39. Oil Drain Valve UHF PD Sensor (2021) HV Technologies, Inc. https://hvtechnologies.com/wp-content/uploads/2021/01/HVT_DS_Drain-Valve-UHF_12142020.pdf Accessed on 19 Apr 2023

  40. TMS-UHF System (2018) Comprehensive transformer monitoring system. UHF Drain Valve DN 50 PD Sensor. https://pdicus.com/wp-content/uploads/2018/11/TFR-Monitoring-Rev-F.pdf Accessed on 19 Apr 2023

  41. Siegel M, Beltle M, Tenbohlen S (2016) Characterization of UHF PD sensors for power transformers using an oil-filled GTEM cell. IEEE Trans Dielectr Electr Insul 23(3):1580–1588. https://doi.org/10.1109/TDEI.2016.005562

    Article  Google Scholar 

  42. Siegel M, Beltle M, Tenbohlen S, Coenen S (2017) Application of UHF sensors for PD measurement at power transformers. IEEE Trans Dielectr Electr Insul 24(1):331–339. https://doi.org/10.1109/TDEI.2016.005913

    Article  Google Scholar 

  43. Tenbohlen S, Beura CP, Sikorski W, Sánchez RA, de Castro BA, Beltle M, Fehlmann P, Judd M, Werner F, Siegel M (2023) Frequency range of UHF PD measurements in power transformers. Energies 16(3):1395:1-1421. https://doi.org/10.3390/en16031395

    Article  Google Scholar 

  44. Albarracín R, Ardila-Rey JA, Mas’ud AA (2016) On the use of monopole antennas for determining the effect of the enclosure of a power transformer tank in partial discharges electromagnetic propagation. Sensors 16(2):148:1-218. https://doi.org/10.3390/s16020148

    Article  Google Scholar 

  45. Coenen S, Hässig M, Siegel M, Fuhr J, Neuhold S, Brügger T, Hoek S, Linn T (2018) Placement of UHF Sensors on Power Transformers, In: Proceedings of VDE-Hochspannungstechnik, Berlin, pp 539–544. fkh.ch/wp-content/uploads/2019/11/2018_CoenenS.-NeBg_Placement-of-UHF-Sensors-on-Power-Transformers_VDE-ETG-HS-Tagung-Berlin.pdf

  46. Jahangir H, Akbari A, Werle P, Szczechowski J (2017) Possibility of PD calibration on power transformers using UHF probes. IEEE Trans Dielectr Electr Insul 24(5):2968–2976. https://doi.org/10.1109/TDEI.2017.006374

    Article  Google Scholar 

  47. Beura CP, Beltle M, Wenger P, Tenbohlen S (2022) Experimental analysis of ultra-high-frequency signal propagation paths in power transformers. Energies 15(8):2766:1-2815. https://doi.org/10.3390/en15082766

    Article  Google Scholar 

  48. Promwong S, Tiengthong T (2020) Evaluation of UHF transfer function in a power transformer for real-time partial discharge detection. J Mob Multimed 16(1–2):65–84. https://doi.org/10.13052/jmm1550-4646.16124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mr. DD wrote the whole manuscript.

Corresponding author

Correspondence to Djordje Dukanac.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukanac, D. Extraction of partial discharge signal in predominant VHF range in the presence of strong noise in power transformer. Electr Eng 105, 3001–3018 (2023). https://doi.org/10.1007/s00202-023-01855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01855-x

Keywords

Navigation