Skip to main content

Advertisement

Log in

Subdomain method for brushless double-rotor flux-switching permanent magnet machines with yokeless stator

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a two-dimensional analytical model for brushless double-rotor flux-switching permanent magnet machines (BDRPFSPMM) with yokeless stator recognized as a type of partitioned-structure flux-switching permanent magnet that is an appropriate machine to be employed as the electric motor in industry. The most salient advantages of the proposed machine are low iron loss due to volume of iron in stator and high space of stator slot for winding. The radial and tangential components of the magnetic flux density due to permanent magnets and armature currents in each active domain of the machine, electromagnetic torque, self- and mutual inductance, unbalanced magnetic force (UMF), and local traction are calculated based on the subdomain method. Teethes on both rotor and stator structures are effective on magnetic quantities, so interactions of rotor and stator saliency are considered. The method is general for the magnetic field calculation with any combination of rotor- and stator-pole number. To validate the proposed model, the analytical outputs are compared with those obtained from the finite element method (FEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

No datasets were generated or analyzed during the current study.

Abbreviations

A:

Magnetic vector potential (V.s/m)

B:

Magnetic flux density vector (T)

B rem :

Permanent magnet residual flux density (T)

Br :

Radial component of B (T)

B t :

Tangential component of B (T)

H:

Magnetic field intensity vector (A/m)

H t :

Tangential component of H (T)

J:

Armature current density vector (A/m2)

M:

Magnetization vector (A/m).

μ 0 :

Free space permeability (H/m)

μ r :

Relative permeability

μ rpm :

Relative permeability of permanent magnet

N ss :

Number of stator slots

N irs :

Number of inner rotor slots

N pm :

Number of permanent magnets

N ors :

Number of outer rotor slots

α i :

Central angle of ith slot of inner rotor

β i :

Central angle of ith slot of stator

λ i :

Central angle of ith PM

σ i :

Central angle of ith slot of outer rotor

References

  1. Cao R, Yuan X, Jin Y, Zhang Z (2019) MW- Class Stator Wound Field Flux-Switching Motor for Semi-Direct Drive Wind Power Generation System. IEEE Trans Industr Electron 66(1):795–805

    Article  Google Scholar 

  2. Yıldırız E, Güleç M, Aydın M (2018) An innovative dual-rotor axial-gap flux-switching permanent-magnet machine topology with hybrid excitation. IEEE Trans Magn 54(11):8107705

    Article  Google Scholar 

  3. Mo L, Zhu X, Zhang T, Quan L, Lu Q, Bai X (2018) Loss and efficiency of a flux-switching permanent-magnet double-rotor machine with high torque density. IEEE Trans Magn 54(11):8106705

    Article  Google Scholar 

  4. Cheng M, Hua W, Zhang J, Zhao W (2011) Overview of stator permanent magnet brushless machines. IEEE Trans Ind Electron 58(11):5087–5101

    Article  Google Scholar 

  5. Xiang Z, Quan L, Zhu X, Wang L (2015) A brushless double mechanical ports permanent magnet motor for plug-in HEVs. IEEE Trans Magn 51(11):8111

    Article  Google Scholar 

  6. Dupas A, Hlioui S, Hoang E, Gabsi M, Lecrivain M (2015) Investigation of a new topology of hybrid-excited flux-switching machine with static global winding: experiments and modeling. IEEE Trans Ind Appl 52(2):1413–1421

    Google Scholar 

  7. Li S, Li Y, Sarlioglu B (2015) Partial irreversible demagnetization assessment of flux-switching permanent magnet machine using ferrite permanent magnet material. IEEE Trans Magn 51(7):8106209

    Google Scholar 

  8. Ullah W, Khan F, Sulaiman E, Sami I, Ro J (2020) Analytical sub-domain model for magnetic field computation in segmented permanent magnet switched flux consequent pole machine. IEEE Access 9:3774–3783

    Article  Google Scholar 

  9. Cao R, Jin Y, Zhang Y, Cheng M (2016) A new double-sided HTS flux-switching linear motor with series magnet circuit. IEEE Trans Appl Superconduct 26(7):5207405

    Article  Google Scholar 

  10. Du Y, Zou C, Zhu X, Zhang C, Xiao F (2016) A full-pitched flux-switching permanent magnet motor. IEEE Trans Appl Superconduct 26(4):0604505

    Article  Google Scholar 

  11. Zhang J, Cheng M, Chen Z, Hua W (2009) Comparison of stator mounted permanent-magnet machines based on a general power equation. IEEE Trans Energy Convers 24(4):826–834

    Article  Google Scholar 

  12. Mo L, Zhu X, Zhang T, Quan L, Lu Q, Bai X (2018) Loss and efficiency of a flux-switching permanent-magnet double-rotor machine with high torque density. IEEE Trans Magn 54(11):8106705

    Article  Google Scholar 

  13. Yıldırız E, Güleç M, Aydın M (2018) An innovative dual-rotor axial-gap flux-switching permanent-magnet machine topology with hybrid excitation. IEEE Trans Magn 54(11):8107705

    Article  Google Scholar 

  14. Zhou LK, Hua W, Cheng M (2017) Analysis and optimization of key dimensions of co-axial dual-mechanical-port flux-switching permanent magnet machines for fuel-based extended range electric vehicles. CES Trans Electr Mach Syst 1(3):292–299

    Article  Google Scholar 

  15. Xiang Z, Quan L, Zhu X, Huang J, Fan D (2018) Investigation of Optimal Split Ratio in Brushless Dual-Rotor Flux-Switching Permanent Magnet Machine Considering Power Allocation. IEEE Trans Magn 54(3):8102104

    Article  Google Scholar 

  16. Wu Z, Zhu Z (2015) Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines. Magn IEEE Trans Magn 51(5):8105012

    Article  Google Scholar 

  17. Hua W, Zhang G, Cheng M (2015) Investigation and design of a high-power flux-switching permanent magnet machine for hybrid electric vehicles. IEEE Trans Magn 51(3):8201805

    Google Scholar 

  18. Dai M, Quan L, Zhu X, Xiang Z and Zhou H (2014) Design of a sandwiched flux switching permanent magnet machine with outer-rotor configuration. In: 2014 IEEE conference and expo transportation electrification Asia-Pacific (ITEC Asia-Pacific), article number: 14711707

  19. Boughrara K, Lubin T, Ibtiouen R (2013) General subdomain model for predicting magnetic field in internal and external rotor multiphase flux switching machines topologies. IEEE Trans Magn 49(10):5310–5325

    Article  Google Scholar 

  20. Gysen BLJ, Ilhan E, Meessen KJ, Paulides JJH, Lomonova EA (2010) Modeling of flux switching permanent magnet machines with Fourier analysis. IEEE Trans Magn 46(6):1499–1502

    Article  Google Scholar 

  21. Yu D, Yun CY, Lin YL (2017) Design and comparison of double-stator and conventional flux switched permanent magnet motor. In: 2017 20th international conference on electrical machines and systems (ICEMS)

  22. Yang H, Lin H, Li Y, Wang H, Fang S, Huang Y (2018) Analytical modeling of switched flux memory machine. IEEE Trans Magn 54(3):810180

    Article  Google Scholar 

  23. Ilhan E, Gysen BLJ, Paulides JJH, Lomonova EA (2010) Analytical hybrid model for flux switching permanent magnet machines. IEEE Trans Magn 46(6):1762–1765

    Article  Google Scholar 

  24. Gysen BLJ, Ilhan E, Meessen KJ, Paulides JJH, Lomonova EA (2010) Modeling of flux switching permanent magnet machines with fourier analysis. IEEE Trans Magn 46(6):1499–1502

    Article  Google Scholar 

  25. Gaussens B, Hoang E, de la Barriere O, Saint-Michel J, Gabsi M (2012) Analytical approach for air-gap modeling of field-excited flux-switching machine: no-load operation. IEEE Trans Magn 48(9):2505–2517

    Article  Google Scholar 

  26. Yang H, Lin H, Li Y, Wang H, Fang S, Huang Y (2018) Analytical modeling of switched flux memory machine. IEEE Trans Magn 54(3):8101805

    Article  Google Scholar 

  27. Yu J, Liu C, Song Z, Zhao H (2020) Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent magnet machine. IEEE Trans Transp Electrific 6(3):1134–1145

    Article  Google Scholar 

  28. Boughrara K, Lubin T, Ibtiouen R (2013) General subdomain model for predicting magnetic field in internal and external rotor multiphase flux-switching machines topologies. IEEE Trans Magn 49(10):5310–5325

    Article  Google Scholar 

  29. Xiang Z, Zhu X, Quan L, Du Y, Zhang C, Fan D (2016) Multilevel design optimization and operation of a brushless double mechanical ports flux-switching permanent magnet motor. IEEE Trans Ind Electr 63(10):6042–6054

    Article  Google Scholar 

  30. Ullah W, Khan F, Sulaiman E, Sami I, Ro J (2020) Analytical sub-domain model for magnetic field computation in segmented permanent magnet switched flux consequent pole machine. IEEE Access 9:3774–3783

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ES that simulation and novelty has been done by him and initial writing and sentencing is on him. HMP and MTS only works on correcting sentencing.

Corresponding author

Correspondence to Ehsan Shirzad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

This research is sponsored by [Bojnourd University] and may lead to development of products.

Ethical approval

I hereby declare that this thesis represents my own work which has been done after studying at university of Bojnourd and has not been previously included in a thesis or dissertation submitted to this or any other institution for a degree, diploma, or other qualifications. I have read the research ethics guidelines and accept responsibility for the conduct of the procedures in accordance with Springer journal. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing, we confirm that we have followed the regulations of our institutions concerning intellectual property. We further confirm any aspect of the work covered in this manuscript that not has involved either experimental animals or human patients. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions for calculating the coefficients are as follows:

$$ a_{irs,0} = \frac{1}{{w_{irs} }}\mathop \int \limits_{{\alpha_{i} - w_{irs} /2}}^{{\alpha_{i} + w_{irs} /2}} A_{z}^{ia} \left( {R_{irs} ,\theta } \right)d\theta $$
(40)
$$ a_{irs,n} f\left( {n,R_{irs} } \right) = \frac{2}{{w_{irs} }}\mathop \int \limits_{{\alpha_{i} - w_{irs} /2}}^{{\alpha_{i} + w_{irs} /2}} A_{z}^{ia} \left( {R_{irs} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{irs} }}\left( {\begin{array}{*{20}c} {\theta - \alpha_{i} } \\ { + \frac{{w_{irs} }}{2}} \\ \end{array} } \right)} \right)d\theta $$
(41)
$$ m( - b_{ia,1,m} R_{irs}^{m - 1} + b_{ia,1,m} R_{irs}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{irs} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\alpha_{i} - w_{irs} /2}}^{{\alpha_{i} + w_{irs} /2}} H_{\theta }^{irs,i} \left( {R_{irs} ,\theta } \right)\sin \left( {m\theta } \right)d\theta $$
(42)
$$ m ( - a_{ia,1,m} R_{irs}^{m - 1} + a_{ia,1,m} R_{irs}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{irs} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\alpha_{i} - w_{irs} /2}}^{{\alpha_{i} + w_{irs} /2}} H_{\theta }^{irs,i} \left( {R_{irs} ,\theta } \right)\cos \left( {m\theta } \right)d\theta $$
(43)
$$ \left( {a_{\iota ss,0} + b_{\iota ss,0} \ln \left( {R_{is} } \right) - \frac{1}{4}\mu_{0} J_{ss,0} R_{is}^{2} } \right) = \frac{1}{{w_{ss} }}\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} A_{z}^{ia} \left( {R_{is} ,\theta } \right)d\theta $$
(44)
$$ \begin{gathered}\frac{2}{n\pi }\sin \left( { \frac{n\pi d}{{w_{ss} }}} \right)\left( { - \frac{1}{4}\mu_{0} R_{is}^{2} } \right)(J_{ss,1} +J_{ss,2} \left( { - 1} \right)^{n} ))\\\quad \times(a_{ss,n} R_{is}^{{\frac{ - n\pi }{{w_{ss} }}}} + b_{ss,n} R_{is}^{{\frac{n\pi }{{w_{ss} }}}} ) \hfill \\\quad = \frac{2}{{w_{ss} }}\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} A_{z}^{ia} \left( {R_{is} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{ss} }}\left( {\begin{array}{*{20}c} {\theta - \beta_{i} } \\ { + \frac{{w_{ss} }}{2}} \\ \end{array} } \right)} \right)d\theta \hfill \\\end{gathered}$$
(45)
$$ n( - b_{ia,1,m} R_{is}^{m - 1} + b_{ia,1,m} R_{is}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ss} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} H_{\theta }^{ss,i} \left( {R_{is} ,\theta } \right)\sin \left( {m\theta } \right)d\theta + \mathop \sum \limits_{i = 1}^{{N_{pm} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} H_{\theta }^{pm,i} \left( {R_{is} ,\theta } \right)\sin \left( {m\theta } \right)d\theta $$
(46)
$$ m ( - a_{ia,1,m} R_{is}^{m - 1} + a_{ia,1,m} R_{is}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ss} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} H_{\theta }^{ss,i} \left( {R_{is} ,\theta } \right)\cos \left( {m\theta } \right)d\theta + \mathop \sum \limits_{i = 1}^{{N_{pm} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} H_{\theta }^{pm,i} \left( {R_{ss} ,\theta } \right)\cos \left( {m\theta } \right)d\theta $$
(47)
$$ a_{pm,0} + b_{pm,0} \ln \left( {R_{is} } \right) - \mu_{0} M_{pm} R_{is} = \frac{1}{{w_{pm} }}\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} A_{z}^{ia} \left( {R_{is} ,\theta } \right)d\theta $$
(48)
$$ (a_{ipm,n} R_{is}^{{\frac{ - n\pi }{{w_{pm} }}}} + b_{ipm,n} R_{iss}^{{\frac{n\pi }{{w_{ipm} }}}} ) = \frac{2}{{w_{pm} }}\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} {\text{A}}_{{\text{z}}}^{ia} \left( {R_{is} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{pm} }}\left( {\begin{array}{*{20}c} {\theta - \lambda_{i} } \\ { + \frac{{w_{pm} }}{2}} \\ \end{array} } \right)} \right)d\theta $$
(49)
$$ a_{ors,0} = \frac{1}{{w_{ors} }}\mathop \int \limits_{{\sigma_{i} - w_{ors} /2}}^{{\sigma_{i} + w_{ors} /2}} {\text{A}}_{{\text{z}}}^{oa} \left( {R_{ors} ,\theta } \right)d\theta $$
(50)
$$ a_{ors,n} f\left( {n,R_{ors} } \right) = \frac{2}{{w_{ors} }}\mathop \int \limits_{{\sigma_{i} - \frac{{w_{ors} }}{2}}}^{{\sigma_{i} + \frac{{w_{ors} }}{2}}} {\text{A}}_{{\text{z}}}^{oa} \left( {R_{ors} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{ors} }}\left( {\begin{array}{*{20}c} {\theta - \sigma_{i} } \\ { + \frac{{w_{ors} }}{2}} \\ \end{array} } \right)} \right)d\theta $$
(51)
$$ m ( - b_{oa,1,m} R_{ors}^{m - 1} + b_{oa,1,m} R_{ors}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ors} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\sigma_{i} - w_{ors} /2}}^{{\sigma_{i} - w_{ors} /2}} H_{\theta }^{ors,i} \left( {R_{ors} ,\theta } \right)\sin \left( {n\theta } \right)d\theta $$
(52)
$$ n ( - a_{oa,1,n} R_{ors}^{n - 1} + a_{oa,1,n} R_{ors}^{ - n - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ors} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\sigma_{i} - w_{ors} /2}}^{{\sigma_{i} + w_{ors} /2}} H_{\theta }^{ors,i} \left( {R_{ors} ,\theta } \right)\cos \left( {n\theta } \right)d\theta $$
(53)
$$ \left( {a_{ss,0} + b_{ss,0} \ln \left( {R_{os} } \right) - \frac{1}{4}\mu_{0} J_{0,ss} R_{os}^{2} } \right) = \frac{1}{{w_{ss} }}\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} A_{z}^{oa} \left( {R_{ss} ,\theta } \right)d\theta $$
(54)
$$ \frac{2}{n\pi }\sin \left( {\frac{n\pi d}{{w_{ss} }}} \right)\left( { - \frac{1}{4}\mu_{0} R_{os}^{2} } \right)(J_{ss,1} + J_{ss,2} \left( { - 1} \right)^{n} )(a_{ss,n} R_{os}^{{\frac{ - n\pi }{{w_{ss} }}}} + b_{ss,n} R_{os}^{{\frac{n\pi }{{w_{ss} }}}} ) = \frac{2}{{w_{ss} }}\mathop \int \limits_{{\beta_{i} - \frac{{w_{ss} }}{2}}}^{{\beta_{i} + \frac{{w_{ss} }}{2}}} {\text{A}}_{{\text{z}}}^{oa} \left( {R_{os} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{iss} }}\left( {\begin{array}{*{20}c} {\theta - \beta_{i} } \\ { + \frac{{w_{ss} }}{2}} \\ \end{array} } \right)} \right)d\theta $$
(55)
$$ m ( - b_{oa,1,m} R_{os}^{m - 1} + b_{oa,1,m} R_{os}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ss} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\beta_{i} - w_{oss} /2}}^{{\beta_{i} + w_{oss} /2}} H_{\theta }^{ss,i} \left( {R_{os} ,\theta } \right)\sin \left( {m\theta } \right)d\theta + \mathop \sum \limits_{i = 1}^{{N_{pm} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} H_{\theta }^{pm,i} \left( {R_{os} ,\theta } \right)\sin \left( {m\theta } \right)d\theta $$
(56)
$$ m ( - a_{oa,1,m} R_{os}^{m - 1} + a_{oa,1,m} R_{os}^{ - m - 1} ) = \mathop \sum \limits_{i = 1}^{{N_{ss} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\beta_{i} - w_{ss} /2}}^{{\beta_{i} + w_{ss} /2}} H_{\theta }^{ss,i} \left( {R_{os} ,\theta } \right)\cos \left( {m\theta } \right)d\theta + \mathop \sum \limits_{i = 1}^{{N_{pm} }} \frac{{\mu_{0} }}{\pi }\mathop \int \limits_{{\lambda_{i} - w_{opm} /2}}^{{\lambda_{i} + w_{opm} /2}} H_{\theta }^{pm,i} \left( {R_{os} ,\theta } \right)\cos \left( {m\theta } \right)d\theta $$
(57)
$$ a_{pm,0} + b_{pm,0} \ln \left( {R_{os} } \right) - \mu_{0} M_{pm} R_{os} = \frac{1}{{w_{pm} }}\mathop \int \limits_{{\lambda_{i} - w_{pm} /2}}^{{\lambda_{i} + w_{pm} /2}} A_{z}^{oa} \left( {R_{os} ,\theta } \right)d\theta $$
(58)
$$ (a_{pm,n} r^{{\frac{ - n\pi }{{w_{pm} }}}} + b_{pm,n} r^{{\frac{n\pi }{{w_{pm} }}}} ) = \frac{2}{{w_{pm} }}\mathop \int \limits_{{\lambda_{i} - \frac{{w_{pm} }}{2}}}^{{\lambda_{i} + \frac{{w_{pm} }}{2}}} {\text{A}}_{{\text{z}}}^{oa} \left( {R_{os} ,\theta } \right)\cos \left( {\frac{n\pi }{{w_{pm} }}\left( {\begin{array}{*{20}c} {\theta - \lambda_{i} } \\ { + \frac{{w_{pm} }}{2}} \\ \end{array} } \right)} \right)d\theta $$
(59)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirzad, E., Pirouz, H.M. & Shirzad, M.T. Subdomain method for brushless double-rotor flux-switching permanent magnet machines with yokeless stator. Electr Eng 106, 1475–1485 (2024). https://doi.org/10.1007/s00202-023-01795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01795-6

Keywords

Navigation