Skip to main content
Log in

Universal-input integrated LED driver with robust \(\mathcal {H}_\infty \) controller for full-range high power factor and dimming capabilities under low current ripple

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This work proposes a dimmable high-power factor LED driver operating from universal mains voltage range (90–264 V). In order to ensure stability and good dynamic response, for all operating points, a robust state feedback controller is used. Additionally, a \(\mathcal {H}_{\infty }\) optimization is employed to attenuate the undesired output current low-frequency ripple. The controller’s design is carried out by means of linear matrix inequalities (LMIs). In order to validate the theoretical analysis, a 34 W integrated off-line buck–boost flyback converter prototype was built. The results have shown the capability of the control scheme of ensuring robust stability and performance throughout the whole operating range, as well as providing an output current ripple attenuation of about 66%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Schubert EF, Gessmann T, Kim JK (2005) Light emitting diodes. Wiley Online Library

  2. Laubsch A, Sabathil M, Baur J, Peter M, Hahn B (2009) High-power and high-efficiency ingan-based light emitters. IEEE Trans Electron Devices 57(1):79–87

    Article  Google Scholar 

  3. Association IS, et al (1789) Ieee recommended practices for modulating current in high-brightness leds for mitigating health risks to viewers. IEEE Std 2015:1–80

  4. Soares GM (2017) Capacitance reduction in off-line led drivers by using active ripple compesation techniques. PhD thesis, Universidade Federal de Juiz de Fora

  5. Gacio D, Alonso JM, Calleja AJ, Garcia J, Rico-Secades M (2011) A universal-input single-stage high-power-factor power supply for HB-LEDs based on integrated buck–flyback converter. IEEE Trans Ind Electron 58(2):589–599. https://doi.org/10.1109/tie.2010.2046578

    Article  Google Scholar 

  6. Luz PCV, Bolan PE, Maboni T, Cosetin MR, da Silva MF, do Prado RN (2014) An integrated insulated buck-boost-flyback converter to feed LED’s lamps to street lighting with reduced capacitances. In: 2014 11th IEEE/IAS international conference on industry applications. IEEE. https://doi.org/10.1109/induscon.2014.7059432

  7. Menke MF, Seidel AR, Tambara RV (2019) LLC LED driver small-signal modeling and digital control design for active ripple compensation. IEEE Trans Ind Electron 66(1):387–396. https://doi.org/10.1109/tie.2018.2829683

    Article  Google Scholar 

  8. Soares GM, Almeida PS, de Oliveira LW, Alonso JM, Braga HAC (2018) Optimized design of a wide-bandwidth controller for low-frequency ripple compensation in offline LED drivers. IEEE J Emerg Select Top Power Electron 6(3):1166–1178. https://doi.org/10.1109/jestpe.2018.2818141

    Article  Google Scholar 

  9. Luz P, Cassol J, Righi M, Vargas G, Prado R, Kirsten A (2018) Resonant control applied to bus capacitance reduction in integrated double buck-boost to led driver. Eletrônica de Potência 23(1), 98–107 . https://doi.org/10.18618/rep.2018.1.2739

  10. Chiu C-S, Shen C-T, Hsieh G-C (2015) Universal lighting control of unknown connected light emitting diode arrays via a t–s fuzzy model-based approach. IET Power Electron 8(2):151–164. https://doi.org/10.1049/iet-pel.2013.0259

    Article  Google Scholar 

  11. Wang F-C, Tang C-W, Huang B-J (2010) Multivariable robust control for a red-green-blue led lighting system. IEEE Trans Power Electron 25(2):417–428

    Article  Google Scholar 

  12. Dong J, Zhang G (2016) Identification and robust control of the nonlinear photoelectrothermal dynamics of led systems. IEEE Trans Ind Electron 64(3):2215–2225

    Article  Google Scholar 

  13. Wu T-F, Liang S-A, Chen Y-K (1999) High-power-factor single-stage converter with robust controller for universal off-line applications. IEEE Trans Power Electron 14(6):1078–1085

    Article  Google Scholar 

  14. Wang L, Zhang B, Qiu D (2016) A novel valley-fill single-stage boost-forward converter with optimized performance in universal-line range for dimmable led lighting. IEEE Trans Ind Electron 64(4):2770–2778

    Article  Google Scholar 

  15. Olalla C, Leyva R, Aroudi AE, Garcias P, Queinnec I (2008) Lmi robust control design for boost pwm converters

  16. Olalla C, Leyva R, Aroudi AE, Queinnec I (2009) Robust LQR control for PWM converters: an LMI approach. IEEE Trans Ind Electron 56(7):2548–2558. https://doi.org/10.1109/tie.2009.2017556

    Article  Google Scholar 

  17. Olalla C, Leyva R, Aroudi AE, Garces P, Queinnec I (2010) LMI robust control design for boost PWM converters. IET Power Electron 3(1):75. https://doi.org/10.1049/iet-pel.2008.0271

    Article  Google Scholar 

  18. Maccari LA, do Amaral-Santini CL, Pinheiro H, de Oliveira RCLF, Mantagner VF (2015) Robust optimal current control for grid-connected three-phase pulse-width modulated converters. IET Power Eletron 8:1490–1499

    Article  Google Scholar 

  19. Ribas SP, Maccari LA, Pinheiro H, de Leao-Fontoura-Oliveira RC, Montagner VF (2014) Design and implementation of a discrete-time h-infinity controller for uninterruptible power supply systems. IET Power Electron 7(9):2233–2241. https://doi.org/10.1049/iet-pel.2013.0794

    Article  Google Scholar 

  20. Wu T-F, Chen Y-K (1999) Modeling of single-stage converters with high power factor and fast regulation. IEEE Trans Ind Electron 46(3):585–593

    Article  Google Scholar 

  21. Garcia J, Dalla-Costa MA, Kirsten AL, Gacio D, Calleja AJ (2013) A novel flyback-based input PFC stage for electronic ballasts in lighting applications. IEEE Trans Ind Appl 49(2):769–777. https://doi.org/10.1109/tia.2013.2244545

    Article  Google Scholar 

  22. Alonso JM, Gacio D, Garcia J, Rico-Secades M, Dalla Costa M (2011) Analysis and design of the integrated double buck-boost converter operating in full dcm for led lighting applications. In: IECON 2011-37th annual conference of the IEEE industrial electronics society, pp 2889–2894. IEEE

  23. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system & control theory (studies in applied mathematics, vol 15). Society for Industrial and Applied

  24. Chilali M, Gahinet P, Apkarian P (1999) Robust pole placement in LMI regions. IEEE Trans Autom Control 44(12):2257–2270

    Article  MathSciNet  MATH  Google Scholar 

  25. Duan G-R, Yu H-H (2013) LMIs in control systems: analysis, design and applications. CRC Press

  26. Liu K-Z, Yao Y (2016) Robust control: theory and applications. Wiley

  27. Olalla C, Leyva R, Aroudi AE, Garce’s P, Queinnec I (2010) LMI robust control design for boost PWM converters. IET Power Peectron 3(10):75–85

    Article  Google Scholar 

  28. Astrom KA, Wittenmark B (2011) Computer-controlled systems: theory and design, 3rd edn (Dover Books on Electrical Engineering). Dover Publications

Download references

Acknowledgements

This research was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under Grant 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 302364/2022-6 and 404068/2020-0, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) under Grant APQ-03609-17 and Instituto Nacional de Energia Elétrica (INERGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. de Almeida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, B.H.d., Almeida, P.S., Soares, G.M. et al. Universal-input integrated LED driver with robust \(\mathcal {H}_\infty \) controller for full-range high power factor and dimming capabilities under low current ripple. Electr Eng 105, 1897–1910 (2023). https://doi.org/10.1007/s00202-023-01787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01787-6

Keywords

Navigation