Skip to main content

Advertisement

Log in

Demagnetization fault detection of permanent magnet synchronous motor with convolutional neural network

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, the convolutional neural network (CNN) architecture of deep learning was used to diagnose a demagnetization fault that occurred in permanent magnet synchronous motors (PMSM) under stationary speed conditions. Faults in the motor increase the maintenance costs and decrease the production capacity. At first, it was tried to prevent faults with periodic maintenance, but it was not enough to prevent disruptions in production because of faults. For this reason, condition monitoring methods in electric motors have recently replaced periodic maintenance. PMSMs are widely used in industry due to their advantages, such as high efficiency and high power-to-weight ratio. Nowadays, the CNN, one of the deep learning architectures, is widely used due to its success in classification. In the study, a new CNN architecture was created for the detection of demagnetization faults in PMSM. The signals used in the CNN architecture in this study are the current signals of the PMSM. As a result of the study, the proposed CNN model achieved a high success rate of 99.92% on average in diagnosing the demagnetization fault in PMSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Bazurto AJ, Quispe EC, Mendoza RC (2017) “Causes and failures classification of industrial electric motor.”In: Proc. 2016 IEEE Andescon, Andescon 2016, pp. 1–4. https://doi.org/10.1109/ANDESCON.2016.7836190

  2. Öksüztepe E, Omaç Z, Polat M, Çelik H, Selçuk AH, Kürüm H (2016) Sensorless field oriented control of nonsinusoidal flux-distribution permanent magnet synchronous motor with a FEM based ANN observer. Turkish J Electr Eng Comput Sci 24(4):2994–3010. https://doi.org/10.3906/ELK-1403-269

    Article  Google Scholar 

  3. Kumar KV, Kumar SS, Praveena B, John JP, Paul JE (2010) “Soft computing based fault diagnosis.” In 2010 2nd Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2010. https://doi.org/10.1109/ICCCNT.2010.5591631.

  4. Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans Energy Convers 20(4):719–729. https://doi.org/10.1109/TEC.2005.847955

    Article  Google Scholar 

  5. Çıra F (2019) Detection of winding insulation fault by using moment data of permanent magnet synchronous motor with extreme learning machine method. EMO Bilim Dergi 9(2):7–15

    Google Scholar 

  6. Rosu M, Saitz J, Arkkio A (2005) Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition. IEEE Trans Magn 41(6):2118–2123. https://doi.org/10.1109/TMAG.2005.848319

    Article  Google Scholar 

  7. Rosero J, Romeral L, Ortega JA, Urresty JC, (2008) “Demagnetization fault detection by means of hilbert huang transform of the stator current decomposition in PMSM.”In: IEEE International Symposium on Industrial Electronics, pp 172–177. https://doi.org/10.1109/ISIE.2008.4677217.

  8. Riba Ruiz JR, Rosero JA, Garcia Espinosa A, Romeral L (2009) Detection of demagnetization faults in permanent-Magnet synchronous motors under nonstationary conditions. IEEE Trans Magn 45(7):2961–2969. https://doi.org/10.1109/TMAG.2009.2015942

    Article  Google Scholar 

  9. Moosavi SS, Djerdir A, Amirat YA, Khaburi DA (2015) Demagnetization fault diagnosis in permanent magnet synchronous motors: a review of the state-of-the-art. J Magn Magn Mater 391:203–212. https://doi.org/10.1016/J.JMMM.2015.04.062

    Article  Google Scholar 

  10. Akar M, Eker M (2013) Demagnetization fault diagnosis in permanent magnet synchronous motors. Prz Elektrotechniczny 89(2A):229–233

    Google Scholar 

  11. Wang C, Delgado Prieto M, Romeral L, Chen Z, Blaabjerg F, Liu X (2016) Detection of partial demagnetization fault in PMSMs operating under nonstationary conditions”. IEEE Trans Magn 52(7):1–4. https://doi.org/10.1109/TMAG.2015.2511003

    Article  Google Scholar 

  12. Chang LK, Wang SH, Tsai MC (2020) Demagnetization fault diagnosis of a PMSM using auto-encoder and K-means clustering. Energies 13(17):4467. https://doi.org/10.3390/EN13174467

    Article  Google Scholar 

  13. Minervini M, Hausman S, Frosini L (2021) Transfer learning technique for automatic bearing fault diagnosis in induction motors.”In: 2021 IEEE 13th International Symposium Diagnostics Electrical Machines, Power Electronics Drives, SDEMPED 2021, pp 186–192. https://doi.org/10.1109/SDEMPED51010.2021.9605514

  14. Şeker A, Diri B, Balık HH (2017) Derin Öğrenme Yöntemleri ve Uygulamaları Hakkında Bir İnceleme. Gazi J Eng Sci 3(3):47–64

    Google Scholar 

  15. Wang C et al (2021) SOLAR: services-oriented deep learning architectures-deep learning as a service. IEEE Trans Serv Comput 14(1):262–273. https://doi.org/10.1109/TSC.2017.2777478

    Article  Google Scholar 

  16. Nandi A, Biswas S, Samanta K, Roy SS, Chatterjee S (2019) “Diagnosis of induction motor faults using frequency occurrence image plots—a deep learning approach.” In: Proc.—2019 International Conference on Electrical, Electronics Computer Engineering UPCON 2019. https://doi.org/10.1109/UPCON47278.2019.8980279.

  17. Jeong H, Lee H, Kim SW (2018) “Classification and detection of demagnetization and inter-turn short circuit faults in IPMSMs by using convolutional neural networks.” 2018 IEEE Energy Convers Congr Expo ECCE 2018:3249–3254. https://doi.org/10.1109/ECCE.2018.8558191

    Article  Google Scholar 

  18. Karpat F, Kalay, OC, Dirik AE, Dogan O, Korcuklu B, C. Yuce, (2021) “Convolutional neural networks based rolling bearing fault classification under variable operating conditions.” In: 2021 International Conference Innovation Intelligent Systems and Application. INISTA 2021 Proc. https://doi.org/10.1109/INISTA52262.2021.9548378.

  19. Kumar P, Hati AS (2022) Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors. Expert Syst Appl 191:116–290. https://doi.org/10.1016/J.ESWA.2021.116290

    Article  Google Scholar 

  20. Ishikawa T, Igarashi N (2019) Failure diagnosis of demagnetization in interior permanent magnet synchronous motors using vibration characteristics. Appl Sci 9(15):3111. https://doi.org/10.3390/APP9153111

    Article  Google Scholar 

  21. Krichen M, Elbouchikhi E, Benhadj N, Chaieb M, Benbouzid M, Neji R (2020) Motor current signature analysis-based permanent magnet synchronous motor demagnetization characterization and detection. Machines 8(3):35. https://doi.org/10.3390/MACHINES8030035

    Article  Google Scholar 

  22. Wu G, Yu Y, Yang J, Chen Q, Zhou S (2021) Numerical study on the influence of non-uniform demagnetization of permanent magnet synchronous motor. J Phys Conf Ser 1754(1):012137. https://doi.org/10.1088/1742-6596/1754/1/012137

    Article  Google Scholar 

  23. Kao IH, Wang WJ, Lai YH, Perng JW (2019) Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Trans Instrum Meas 68(2):310–324. https://doi.org/10.1109/TIM.2018.2847800

    Article  Google Scholar 

  24. Lee H, Jeong H, Kim SW (2019) Detection of interturn short-circuit fault and demagnetization fault in IPMSM by 1-D convolutional neural network.” In: Asia-Pacific Power Energy Engineering Conference APPEEC. https://doi.org/10.1109/APPEEC45492.2019.8994556.

  25. Maraaba LS, Milhem AS, Nemer IA, Al-Duwaish H, Abido MA (2020) Convolutional neural network-based inter-turn fault diagnosis in LSPMSMs. IEEE Access 8:81960–81970. https://doi.org/10.1109/ACCESS.2020.2991137

    Article  Google Scholar 

  26. Li Z, Wu Q, Yang S, Chen X (2022) Diagnosis of rotor demagnetization and eccentricity faults for IPMSM based on deep CNN and image recognition. Complex Intell Syst 8(6):5469–5488. https://doi.org/10.1007/S40747-022-00764-Z/FIGURES/22

    Article  Google Scholar 

  27. Akar M, Taşkin S, Şeker S, Cankaya I (2010) Detection of static eccentricity for permanent magnet synchronous motors using the coherence analysis. Turkish J Electr Eng Comput Sci 18(6):963–974. https://doi.org/10.3906/elk-0911-298

    Article  Google Scholar 

  28. Sakarya H (200) Sürekli mıknatıslı senkron motorlar için alan yönlendirmeli sürücü düzeneği tasarımı ve uygulaması.” Selçuk Üniversitesi, Konya

  29. Grouz F, Lassaad S (2010) Speed sensorless IFOC of PMSM based on adaptive Luenberger observer. Int J Comput Electr Autom Control Inf Eng 4(8):1256–1262. https://doi.org/10.5281/zenodo.1080953

    Article  Google Scholar 

  30. Kocabıyık H (2019) “Sabit mıknatıslı senkron motorun uzay vektör modülasyonlu alan yönlendirme ve doğrudan moment kontrolünün benzetimi ve analizi.” In: Institute of Science Electrical And Electronics Engineering, Pamukkale University, Denizli

  31. Yu S, Tang R (2006) Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines. IEEE Trans Magn 42(4):1335–1338. https://doi.org/10.1109/TMAG.2006.871637

    Article  MathSciNet  Google Scholar 

  32. Kim KC, Bin Lim S, Koo DH, Lee J (2006) The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization. IEEE Trans Magn 42(10):3485–3487. https://doi.org/10.1109/TMAG.2006.879077

    Article  Google Scholar 

  33. Deng L, Yu D, Deng L, Yu D (2013) Deep learning: methods and applications. Found Trends R Signal Process 7:197–387. https://doi.org/10.1561/2000000039

    Article  MathSciNet  MATH  Google Scholar 

  34. Bengio Y (2009) “Learning deep architectures for AI. Found Trends® Mach Learn, 2(1):1–55. https://doi.org/10.1561/2200000006

  35. Albawi S, Mohammed TA, Al-Zawi S (2018) “Understanding of a convolutional neural network.” In Proceedings 2017 International Conference Engineering Technology ICET 2017, vol. 2018, pp. 1–6. doi: https://doi.org/10.1109/ICENGTECHNOL.2017.8308186

  36. İnik Ö, Ülker E (2017) Derin Öğrenme ve Görüntü Analizinde Kullanılan Derin Öğrenme Modelleri. Gaziosmanpasa J Sci Res 6(3):85–104

    Google Scholar 

  37. Firildak K, Fatih Talu M (2019) Investigation of transfer learning approaches used convolution neural networks. Anatol J Comput Sci 4(2):88–95

    Google Scholar 

  38. He K, Zhang X, Ren S, Sun J (2016) “Deep residual learning for image recognition.” In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol 2016, pp 770–778. https://doi.org/10.1109/CVPR.2016.90.

  39. Redmon J “Darknet: open source neural networks in C,” Pjreddie, 2016. https://pjreddie.com/darknet/ (Accessed Dec. 06, 2022).

  40. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) “Rethinking the inception architecture for computer vision.” In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016 pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  41. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2016) “Densely connected convolutional networks.” In: CVPR, vol. 1, no. 2, Accessed: Dec. 06, 2022. [Online]. Available: https://github.com/liuzhuang13/DenseNet

  42. Chollet F (2016) “Xception: deep learning with depthwise separable convolutions.” In: Proc.—30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017 pp 1800–1807. doi: https://doi.org/10.48550/arxiv.1610.02357.

  43. Russakovsky O et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252. https://doi.org/10.1007/S11263-015-0816-Y/FIGURES/16

    Article  MathSciNet  Google Scholar 

  44. Kulkarni A, Chong D, Batarseh FA (2021) “Foundations of data imbalance and solutions for a data democracy.” Data Democr Nexus Artif Intell Softw Dev Knowl Eng, pp. 83–106. https://doi.org/10.1016/B978-0-12-818366-3.00005-8.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mustafa Eker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eker, M., Gündogan, B. Demagnetization fault detection of permanent magnet synchronous motor with convolutional neural network. Electr Eng 105, 1695–1708 (2023). https://doi.org/10.1007/s00202-023-01768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01768-9

Keywords

Navigation