Skip to main content

Advertisement

Log in

A freely configurable structure of virtual synchronous generator for grid-forming converters

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The provision of system support services by converter-interfaced generation (CIG), which were previously assigned to the conventional synchronous generation, is a challenging task extremely necessary for the stable operation and control of modern power systems. The most promising solution in this direction is the application of grid-forming control strategies for the CIG. This paper proposes a CIG’ control system based on a freely configurable structure of a virtual synchronous generator (FC-VSG). In this control system, different levels of the inverter control are implemented in parallel, and in order to improve the transient performance and damping properties of CIG, the inertial and governor response are coupled at the inner control level, a voltage regulator is added at the outer control level, as well as the combined use of a virtual damper winding and power system stabilizer is applied. Such solutions made it possible not only to mimic the behavior of a conventional rotating machines, but also to significantly improve the transients’ dynamics. To show the effectiveness of the proposed control system, time-domain simulations and experimental case studies have been performed. In addition, the qualitative and quantitative assessment of the dynamic response of the FC-VSG in comparison with both the conventional voltage-controlled VSG structure and the dynamics of a practical synchronous machine have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AVR:

Automatic voltage regulator

CIG :

Converter-interfaced generation

CLA:

Current limiting algorithm

FC-VSG:

Freely configurable virtual synchronous generator structure

ICCL:

Inner current control loop

IVCL:

Inner voltage control loop

PCC :

Point of common coupling

PLL:

Phase-locked loop

PSS:

Power system stabilizer

PWM:

Pulse-width modulation

RoCoF :

Rate of change of frequency

RoCoV :

Rate of change of voltage

SC:

Short-circuit

SG :

Synchronous generator

VC-VSG:

Voltage-controlled virtual synchronous generator structure

VSG:

Virtual synchronous generator

References

  1. Rathnayake DB et al (2021) Grid forming inverter modeling, control, and applications. IEEE Access 9:114781–114807. https://doi.org/10.1109/ACCESS.2021.3104617

    Article  Google Scholar 

  2. Lasseter RH, Chen Z, Pattabiraman D (2020) Grid-forming inverters: a critical asset for the power grid. IEEE J Emerg Sel Top Power Electron 8(2):925–935. https://doi.org/10.1109/JESTPE.2019.2959271

    Article  Google Scholar 

  3. Poolla BK, Groß D, Dörfler F (2019) Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans Power Syst 34(4):3035–3046. https://doi.org/10.1109/TPWRS.2019.2892290

    Article  Google Scholar 

  4. Tayab UB, Roslan MAB, Hwai LJ, Kashif M (2017) A review of droop control techniques for microgrid. Renew Sustain Energy Rev 76:717–727. https://doi.org/10.1016/j.rser.2017.03.028

    Article  Google Scholar 

  5. Cheema KM (2020) A comprehensive review of virtual synchronous generator. Int J Electr Power Energy Syst 120:106006. https://doi.org/10.1016/j.ijepes.2020.106006

    Article  Google Scholar 

  6. Ratnam KS, Palanisamy K, Yang G (2020) Future low-inertia power systems: requirements, issues, and solutions – a review. Renew Sustain Energy Rev 124:109773. https://doi.org/10.1016/j.rser.2020.109773

    Article  Google Scholar 

  7. Sundaramoorthy K, Thomas V, O’Donnell T, Ashok S (2019) Virtual synchronous machine-controlled grid-connected power electronic converter as a ROCOF control device for power system applications. Electr Eng 101(3):983–993. https://doi.org/10.1007/s00202-019-00835-4

    Article  Google Scholar 

  8. Ramirez JM, Montalvo ET, Nuño CI (2020) Modelling, synchronisation, and implementation of the virtual synchronous generator: a study of its reactive power handling. Electr Eng 102(3):1605–1619. https://doi.org/10.1007/s00202-020-00980-1

    Article  Google Scholar 

  9. Beck H-P, Hesse R (2007) Virtual synchronous machine. In: 9th International conference on electrical power quality and utilization, pp 1–6. https://doi.org/10.1109/EPQU.2007.4424220

  10. Chen Y, Hesse R, Turschner D, Beck H (2012) Comparison of methods for implementing virtual synchronous machine on inverters. Renew Energy Power Qual J 1(10):734–739. https://doi.org/10.24084/repqj10.453

    Article  Google Scholar 

  11. Zhong Q-C, Weiss G (2011) Synchronverters: inverters that mimic synchronous generators. IEEE Trans Ind Electron 58(4):1259–1267. https://doi.org/10.1109/TIE.2010.2048839

    Article  Google Scholar 

  12. Hirase Y, Abe K, Sugimoto K, Shindo Y (2013) A grid connected inverter with virtual synchronous generator model of algebraic type. Electr Eng Jpn 184(4):10–21. https://doi.org/10.1002/eej.22428

    Article  Google Scholar 

  13. Wang S, Hu J, Yuan X (2015) Virtual synchronous control for grid-connected DFIG-based wind turbines. IEEE J Emerg Sel Top Power Electron 3(4):932–944. https://doi.org/10.1109/JESTPE.2015.2418200

    Article  Google Scholar 

  14. D’Arco S, Suul JA, Fosso OB (2015) A virtual synchronous machine implementation for distributed control of power converters in Smartgrids. Electr Power Syst Res 122:180–197. https://doi.org/10.1016/j.epsr.2015.01.001

    Article  Google Scholar 

  15. Zhang W, Cantarellas AM, Rocabert J, Luna A, Rodriguez P (2016) Synchronous power controller with flexible droop characteristics for renewable power generation systems. IEEE Trans Sustain Energy 7(4):1572–1582. https://doi.org/10.1109/TSTE.2016.2565059

    Article  Google Scholar 

  16. Karimi A et al (2020) Inertia response improvement in AC microgrids: a fuzzy-based virtual synchronous generator control. IEEE Trans Power Electron 35(4):4321–4331. https://doi.org/10.1109/TPEL.2019.2937397

    Article  Google Scholar 

  17. D'Arco S, Suul JA (2013) Virtual synchronous machines – classification of implementations and analysis of equivalence to droop controllers for microgrids. In: IEEE Grenoble conference powertech (POWERTECH), pp 1–7. https://doi.org/10.1109/PTC.2013.6652456

  18. Pan R, Sun P (2021) Multifunctional inverter based on virtual synchronous machine implemented in synchronous reference frame. Electr Eng 103(4):2093–2111. https://doi.org/10.1007/s00202-021-01220-w

    Article  Google Scholar 

  19. D'Arco S, Suul JA (2021) Improving the power reference tracking of virtual synchronous machines by feed-forward control. In: IEEE 19th international power electronics and motion control conference (PEMC), pp 102–107. https://doi.org/10.1109/PEMC48073.2021.9432548

  20. Alipoor J, Miura Y, Ise T (2015) Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J Emerg Sel Top Power Electron 3(2):451–458. https://doi.org/10.1109/JESTPE.2014.2362530

    Article  Google Scholar 

  21. Chen M, Zhou D, Blaabjerg F (2021) Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system. IEEE Trans Power Electron 36(8):9501–9510. https://doi.org/10.1109/TPEL.2021.3051272

    Article  Google Scholar 

  22. Dong S, Chen YC (2019) Reducing transient active- and reactive-power coupling in virtual synchronous generators. In: IEEE 28th international symposium on industrial electronics (ISIE), pp 1090–1095. https://doi.org/10.1109/ISIE.2019.8781169

  23. Mandrile F, Carpaneto E, Bojoi R (2019) Grid-tied inverter with simplified virtual synchronous compensator for grid services and grid support. In: IEEE energy conversion congress and exposition (ECCE), pp 4317–4323. https://doi.org/10.1109/ECCE.2019.8912266

  24. Mandrile F, Carpaneto E, Bojoi R (2021) Grid-feeding inverter with simplified virtual synchronous compensator providing grid services and grid support. IEEE Trans Ind Appl 57(1):559–569. https://doi.org/10.1109/TIA.2020.3028334

    Article  Google Scholar 

  25. Zhao F, Wang X, Zhu T (2022) Power dynamic decoupling control of grid-forming converter in stiff grid. IEEE Trans Power Electron 37(8):9073–9088. https://doi.org/10.1109/TPEL.2022.3156991

    Article  Google Scholar 

  26. Rosso R, Wang X, Liserre M, Lu X, Engelken S (2021) Grid-forming converters: control approaches, grid-synchronization, and future trends – a review. IEEE Open J Ind Appl 2:93–109. https://doi.org/10.1109/OJIA.2021.3074028

    Article  Google Scholar 

  27. Wu W et al (2019) Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs. IEEE Trans Ind Electron 66(8):6460–6472. https://doi.org/10.1109/TIE.2018.2873523

    Article  Google Scholar 

  28. Ebrahimi M, Khajehoddin SA, Karimi-Ghartemani M (2019) An improved damping method for virtual synchronous machines. IEEE Trans Sustain Energy 10(3):1491–1500. https://doi.org/10.1109/TSTE.2019.2902033

    Article  Google Scholar 

  29. Chen M, Zhou D, Blaabjerg F (2021) Enhanced transient angle stability control of grid-forming converter based on virtual synchronous generator. IEEE Trans Ind Electron 69(9):9133–9144. https://doi.org/10.1109/TIE.2021.3114723

    Article  Google Scholar 

  30. Kundur P (1994) Power system stability and control. McGraw-Hill. https://scholar.google.com/scholar_lookup?title=Power%20System%20Stability%20and%20Control&publication_year=1993&author=P.%20Kundur

  31. Huang L, Xin H, Wang Z (2019) Damping low-frequency oscillations through VSC-HVdc stations operated as virtual synchronous machines. IEEE Trans Power Electron 34(6):5803–5818. https://doi.org/10.1109/TPEL.2018.2866523

    Article  Google Scholar 

  32. Rafique Z, Khalid HM, Muyeen SM, Kamwa I (2022) Bibliographic review on power system oscillations damping: an era of conventional grids and renewable energy integration. Int J Electr Power Energy Syst 136:107556. https://doi.org/10.1016/j.ijepes.2021.107556

    Article  Google Scholar 

  33. Surinkaew T, Ngamroo I (2016) Hierarchical coordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Trans Sustain Energy 7(3):943–955. https://doi.org/10.1109/TSTE.2015.2508558

    Article  Google Scholar 

  34. IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005) (2016) IEEE recommended practice for excitation system models for power system stability studies, pp 1–207. https://scholar.google.com/scholar?q=Ieee%20recommended%20practice%20for%20excitation%20system%20models%20for%20power%20system%20stability%20studies

  35. Komkov AL, Popov EN, Filimonov NY, Yurganov AA, Burmistrov AA (2019) Implementing the system functions of the automatic proportional-derivative excitation control of synchronous generators. Power Technol Eng 53(3):356–359. https://doi.org/10.1007/s10749-019-01084-y

    Article  Google Scholar 

  36. Qoria T, Gruson F, Colas F, Kestelyn X, Guillaud X (2020) Current limiting algorithms and transient stability analysis of grid-forming VSCs. Electr Power Syst Res 189:106726. https://doi.org/10.1016/j.epsr.2020.106726

    Article  Google Scholar 

  37. Gkountaras A, Dieckerhoff S, Sezi T (2015) Evaluation of current limiting methods for grid forming inverters in medium voltage microgrids. In: IEEE energy conversion congress and exposition (ECCE), pp 1223–1230. https://doi.org/10.1109/ECCE.2015.7309831

  38. Yan X, Mohamed SYA (2018) Comparison of virtual synchronous generators dynamic responses. In: IEEE 12th international conference on compatibility, power electronics and power engineering (CPE-POWERENG), pp 1–6. https://doi.org/10.1109/CPE.2018.8372573

  39. Razzhivin I, Askarov A, Rudnik V, Suvorov A (2021) A hybrid simulation of converter-interfaced generation as the part of a large-scale power system model. Int J Eng Technol Innov 11(4):278–293. https://doi.org/10.46604/ijeti.2021.7276

    Article  Google Scholar 

  40. Suvorov AA et al (2020) Comprehensive validation of transient stability calculations in electric power systems and hardware-software tool for its implementation. IEEE Access 8:136071–136091. https://doi.org/10.1109/ACCESS.2020.3011207

    Article  Google Scholar 

  41. Suvorov A et al (2019) The hybrid real-time dispatcher training simulator: basic approach, software-hardware structure and case study. Int J Emerg Electr Power Syst 20(1):20180165. https://doi.org/10.1515/ijeeps-2018-0165

    Article  Google Scholar 

  42. Meng X, Liu J, Liu Z (2019) A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control. IEEE Trans Power Electron 34(6):5416–5438. https://doi.org/10.1109/TPEL.2018.2868722

    Article  MathSciNet  Google Scholar 

  43. Chen M, Zhou D, Blaabjerg F (2020) Modelling, implementation, and assessment of virtual synchronous generator in power systems. J Mod Power Syst Clean Energy 8(3):399–411. https://doi.org/10.35833/MPCE.2019.000592

    Article  Google Scholar 

  44. Suvorov A, Askarov A, Kievets A, Rudnik V (2022) A comprehensive assessment of the state-of-the-art virtual synchronous generator models. Electr Power Syst Res 209:108054. https://doi.org/10.1016/j.epsr.2022.108054

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Science Foundation, project number 21-79-00129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisher Askarov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvorov, A., Askarov, A. & Kievets, A. A freely configurable structure of virtual synchronous generator for grid-forming converters. Electr Eng 105, 1331–1345 (2023). https://doi.org/10.1007/s00202-023-01742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01742-5

Keywords

Navigation