Skip to main content
Log in

Defect detection of small cotter pins in electric power transmission system from UAV images using deep learning techniques

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The detection of defects on small cotter pins that are installed in electric power fittings is an essential part of the inspection task of overhead lines using Unmanned Aerial Vehicles (UAV). It is challenging to detect small defects from a large number of UAV images. In this paper, an efficient and high-performance defect detection model called DDNet is proposed to recognize defects from images of unmanned aerial vehicles. The attention mechanism was adopted in the improved detection model in order to enhance the representation learning of the image. Inspired by the human visual system, the RFB module is added to the FPN module, increasing the receptive field of the entire detection network, which is conducive to the detection of small objects. Then a dataset of cotter pins for model training and testing was introduced. The study demonstrates that the proposed DDNet increases the average precision from 82.0 to 90.1% and reduces the miss rate of defect detection from 14.5 to 7.4% in our dataset compared to the baseline RetinaNet model. We also compared existing frameworks for object detection and discussed other common ways to improve precision. The results showed that our optimized model in this paper improved detection performance, which subsequently proved the practicability and effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jun D, Yanpeng H, Licheng L (2015) An improved method to calculate the radio interference of a transmission line based on the flux-corrected transport and upstream finite element method. J Electrostat 75:1–4. https://doi.org/10.1016/j.elstat.2015.02.002

    Article  Google Scholar 

  2. Zhang T, Zheng W, Xie Y, Yuan J, Xu T, Wang P, Liu G, Guo D, Zhang G, Liang Y (2020) A case study of rupture in 110 kV overhead conductor repaired by full-tension splice. Eng Failure Anal 108:104349. https://doi.org/10.1016/j.engfailanal.2019.104349

    Article  Google Scholar 

  3. Xie Y, Zhao Y, Bao S, Wang P, Huang J, Wang P, Liu G, Hao Y, Li L (2020) Investigation on cable rejuvenation by simulating cable operation. IEEE Access 8:6295–6303. https://doi.org/10.1109/ACCESS.2019.2963423

    Article  Google Scholar 

  4. Lai Q, Chen J, Hu L, Cao J, Xie Y, Guo D, Liu G, Wang P, Zhu N (2020) Investigation of tail pipe breakdown incident for 110 kV cable termination and proposal of fault prevention. Eng Failure Anal 108:104353. https://doi.org/10.1016/j.engfailanal.2019.104353

    Article  Google Scholar 

  5. Zhao Y, Han Z, Xie Y, Fan X, Nie Y, Wang P, Liu G, Hao Y, Huang J, Zhu W (2020) Correlation between thermal parameters and morphology of cross-linked polyethylene. IEEE Access. 8:19726–19736. https://doi.org/10.1109/ACCESS.2020.2968109

    Article  Google Scholar 

  6. Kirby BJ (2007) Load response fundamentally matches power system reliability requirements. In: 2007 IEEE power engineering society general meeting, pp 1–6. https://doi.org/10.1109/PES.2007.386227

  7. Chen B (2020) Fault statistics and analysis of 220-kV and above transmission lines in a southern coastal provincial power grid of China. IEEE Open Access J Power Energy 7:122–129. https://doi.org/10.1109/OAJPE.2020.2975665

    Article  Google Scholar 

  8. Alhassan AB, Zhang X, Shen H, Xu H (2020) Power transmission line inspection robots: a review, trends and challenges for future research. Int J Electr Power Energy Syst 118:105862. https://doi.org/10.1016/j.ijepes.2020.105862

    Article  Google Scholar 

  9. Xie X, Liu Z, Xu C, Zhang Y (2017) A multiple sensors platform method for power line inspection based on a large unmanned helicopter. Sensors 17:1222. https://doi.org/10.3390/s17061222

    Article  Google Scholar 

  10. Li L (2015) The UAV intelligent inspection of transmission lines. Atlantis Press, Amsterdam, pp 1542–1545. https://doi.org/10.2991/ameii-15.2015.285

    Book  Google Scholar 

  11. Hui X, Bian J, Zhao X, Tan M (2018) Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int J Adv Rob Syst 15:1729881417752821. https://doi.org/10.1177/1729881417752821

    Article  Google Scholar 

  12. Guan H, Sun X, Su Y, Hu T, Wang H, Wang H, Peng C, Guo Q (2021) UAV-lidar aids automatic intelligent powerline inspection. Int J Electr Power Energy Syst 130:106987. https://doi.org/10.1016/j.ijepes.2021.106987

    Article  Google Scholar 

  13. Han J, Yang Z, Zhang Q, Chen C, Li H, Lai S, Hu G, Xu C, Xu H, Wang D, Chen R (2019) A method of insulator faults detection in aerial images for high-voltage transmission lines inspection. Appl Sci 9:2009. https://doi.org/10.3390/app9102009

    Article  Google Scholar 

  14. Zhong J, Liu Z, Han Z, Han Y, Zhang W (2019) A CNN-based defect inspection method for catenary split pins in high-speed railway. IEEE Trans Instrum Meas 68:2849–2860. https://doi.org/10.1109/TIM.2018.2871353

    Article  Google Scholar 

  15. Liu C, Wu Y, Liu J, Sun Z, Xu H (2021) Insulator faults detection in aerial images from high-voltage transmission lines based on deep learning model. Appl Sci 11:4647. https://doi.org/10.3390/app11104647

    Article  Google Scholar 

  16. Zhao Z, Xu G, Qi Y (2016) Representation of binary feature pooling for detection of insulator strings in infrared images. IEEE Trans Dielectr Electr Insul 23:2858–2866. https://doi.org/10.1109/TDEI.2016.7736846

    Article  Google Scholar 

  17. Bharata Reddy MJ, Chandra BK, Mohanta DK (2011) A DOST based approach for the condition monitoring of 11 kV distribution line insulators. IEEE Trans Dielectr Electr Insul 18:588–595. https://doi.org/10.1109/TDEI.2011.5739465

    Article  Google Scholar 

  18. Jabid T, Uddin MZ (2016) Rotation invariant power line insulator detection using local directional pattern and support vector machine. In: 2016 International conference on innovations in science, engineering and technology (ICISET), pp 1–4. https://doi.org/10.1109/ICISET.2016.7856522

  19. Zhao Z, Zhen Z, Zhang L, Qi Y, Kong Y, Zhang K (2019) Insulator detection method in inspection image based on improved faster R-CNN. Energies 12:1204. https://doi.org/10.3390/en12071204

    Article  Google Scholar 

  20. Gao F, Wang J, Kong Z, Wu J, Feng N, Wang S, Hu P, Li Z, Huang H, Li J (2017) Recognition of insulator explosion based on deep learning. In: 2017 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp 79–82. https://doi.org/10.1109/ICCWAMTIP.2017.8301453

  21. Tao X, Zhang D, Wang Z, Liu X, Zhang H, Xu D (2020) Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans Syst Man Cybern Syst 50:1486–1498. https://doi.org/10.1109/TSMC.2018.2871750

    Article  Google Scholar 

  22. Sadykova D, Pernebayeva D, Bagheri M, James A (2020) IN-YOLO: real-time detection of outdoor high voltage insulators using UAV imaging. IEEE Trans Power Deliv 35:1599–1601. https://doi.org/10.1109/TPWRD.2019.2944741

    Article  Google Scholar 

  23. Liu J, Jia R, Li W, Ma F, Abdullah HM, Ma H, Mohamed MA (2020) High precision detection algorithm based on improved RetinaNet for defect recognition of transmission lines. Energy Rep 6:2430–2440. https://doi.org/10.1016/j.egyr.2020.09.002

    Article  Google Scholar 

  24. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2018) Focal loss for dense object detection. http://arxiv.org/abs/1708.02002 [Cs]. Accessed 15 Jan 2020

  25. Zhang H, Wu C, Zhang Z, Zhu Y, Lin H, Zhang Z, Sun Y, He T, Mueller J, Manmatha R, Li M, Smola A (2022) ResNeSt: split-attention networks. In: 2022 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 2735–2745. https://doi.org/10.1109/CVPRW56347.2022.00309

  26. Liu S, Huang D, Wang Y (2018) Receptive field block net for accurate and fast object detection. http://arxiv.org/abs/1711.07767 [Cs]. Accessed 25 Oct 2020.

  27. Yu J, Jiang Y, Wang Z, Cao Z, Huang T (2016) UnitBox: an advanced object detection network. In: Proceedings of the 24th ACM international conference on multimedia, association for computing machinery, New York, NY, USA, pp 516–520. https://doi.org/10.1145/2964284.2967274

  28. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. http://arxiv.org/abs/1612.03144 [Cs]. Accessed 11 Nov 2019

  29. He K, Gkioxari G, Dollár P, Girshick R (2018) Mask R-CNN. https://doi.org/10.48550/arXiv.1703.06870

  30. Cai Z, Vasconcelos N (2017) Cascade R-CNN: delving into high quality object detection. http://arxiv.org/abs/1712.00726 [Cs]. Accessed 22 July 2020

  31. Huang Z, Huang L, Gong Y, Huang C, Wang X (2019) Mask scoring R-CNN, pp 6409–6418. https://openaccess.thecvf.com/content_CVPR_2019/html/Huang_Mask_Scoring_R-CNN_CVPR_2019_paper.html. Aaccessed 8 Nov 2022

  32. Redmon J, Farhadi A (2016) YOLO9000: better, faster, stronger. http://arxiv.org/abs/1612.08242 [Cs]. Accessed 22 July 2020.

  33. Redmon J, Farhadi A (2018) YOLOv3: An incremental improvement. https://doi.org/10.48550/arXiv.1804.02767

  34. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. http://arxiv.org/abs/2004.10934 [Cs, Eess]. Accessed 24 April 2020

  35. Jocher G, Chaurasia A, Stoken A, Borovec J, NanoCode012, Kwon Y, TaoXie, Michael K, Fang J, imyhxy, Lorna, Wong C, 曾逸夫(Zeng Yifu), A. V, Montes D, Wang Z, Fati C, Nadar J, Laughing, UnglvKitDe, tkianai, yxNONG, Skalski P, Hogan A, Strobel M, Jain M, Mammana L, xylieong, ultralytics/yolov5: v6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations (2022). https://doi.org/10.5281/zenodo.7002879

  36. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision—ECCV 2016. Springer, Cham, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  37. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. http://arxiv.org/abs/1612.03144 [Cs]. Accessed 11 Nov 2019

  38. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision—ECCV 2014. Springer, Cham, pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  39. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848

  40. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. http://arxiv.org/abs/1412.6980 [Cs]. Accessed 10 May 2019.

  41. Zlocha M, Dou Q, Glocker B (2019) Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. https://doi.org/10.48550/arXiv.1906.02283.

  42. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) CenterNet: keypoint triplets for object detection. http://arxiv.org/abs/1904.08189 [Cs]. Accessed 31 Dec 2020

  43. Tian Z, Shen C, Chen H, He T (2019) FCOS: fully convolutional one-stage object detection, http://arxiv.org/abs/1904.01355 [Cs]. Accessed 22 July 2020

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51977083) and the National High Technology Research and Development Program (863 Program) (2015AA050201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zhou, W., Wang, K. et al. Defect detection of small cotter pins in electric power transmission system from UAV images using deep learning techniques. Electr Eng 105, 1251–1266 (2023). https://doi.org/10.1007/s00202-022-01729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01729-8

Keywords

Navigation