Skip to main content

Advertisement

Log in

Three-phase to K-phase power conversion using voltage fed quasi Z source direct matrix converter with maximum constant boost control technique

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The given research article represents the voltage-fed quasi Z source direct matrix converter (QZSDMC) for three-phase to K-phase power conversion with the maximum constant boost control-modulation technique. To reduce the switching losses and to achieve high efficiency, a new PWM technique has been proposed. The technique controls both the rectifier side and inverter side of the matrix converter equivalent circuit. Compared with the ZSDMC, the voltage-fed QZSDMC has less effective components, is compact in size, and has higher efficiency and a wide range of controlled buck-boost operations. The proposed modulation technique provides lower harmonic contents in the output, poor switching current stresses, lower switching voltages and maximum voltage gain under the given modulation index. This paper discussed the relationship of the voltage gain to the modulation index and the relationship of the switching voltage stresses to the voltage gain have been analyzed. The proposed modulation technique was verified by simulation using MATLAB and also validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pipolo S, Formentini A, Trentin A, Zanchetta P, Calvini M, Venturini M (2021) A novel Matrix converter modulation with a reduced number of commutations. IEEE Trans Ind Appl 52:1

    Google Scholar 

  2. Thangavel MK, Ramasamy BK, Ponnusamy P (2020) Performance analysis of dual space vector modulation technique-based quasi z-source direct matrix converter. Electr Power Compon Syst 0(0):1–12

    Google Scholar 

  3. Krishnan S, Umasankar P, Mohana P (2020) A smart FPGA based design and implementation of grid-connected direct matrix converter with IoT communication. Microprocessor Microsyst 76:124

    Article  Google Scholar 

  4. Yepes AG, Doval-Gandoy J (2021) Simple carrier-based PWM for prolonged high DC-link utilization for symmetrical and asymmetrical n-phase AC drives. IEEE Trans Power Electron 8993(c):1–1

    Google Scholar 

  5. Tawfiq KB, Mansour AS, Ibrahim MN (2020) Design, implementation and performance analysis of shunt active filter based on matrix converter. Int J Electron 0(0):52

    Google Scholar 

  6. Tawfiq KB, Ibrahim MN, EL-Kholy EE, Sergeant P (2021) Performance analysis of a five-phase synchronous reluctance motor connected to matrix converter. In: 2021 IEEE international electric machines & drives conference (IEMDC), pp 1–6

  7. Malekjamshidi Z, Jafari M, Zhu J, Xiao D (2019) Bidirectional power flow control with stability analysis of the matrix converter for microgrid applications. Int J Electr Power Energy Syst 110:725–736

    Article  Google Scholar 

  8. Venkatasubramanian D, Shanthi B (2019) An efficient control method for PMSM drive using an optimized indirect matrix converter. Futur Gener Comput Syst 98:12–17

    Article  Google Scholar 

  9. Siwek P, Urbanski K (2018) Improvement of the torque control dynamics of the PMSM drive using the FOC-controlled simple boost QZSDMC converter. In: 2018 23rd Int. Conf. Methods Model. Autom. Robot. MMAR 2018, pp 29–34

  10. Guo M, Liu Y, Ge B, Abu-Rub H (2018) Optimum boost control of quasi-z source indirect matrix converter. IEEE Trans Ind Electron 65(10):8393–8404

    Article  Google Scholar 

  11. DOF Philosophy, F. Of, and E. Engineering, “Z-source matrix converter for wind turbine driven permanent magnet generator submitted by,” no. March 2019

  12. Moghadasi N, Esmaeli A, Soleymani S, Mozafari B (2018) Quasi-Z-source matrix converters to be used in PMSG-based WECS: modeling, control, and comparison. Int Trans Electr Energy Syst 28(6):1–27

    Article  Google Scholar 

  13. Bozorgi AM, Hakemi A, Farasat M, Monfared M (2018) Modulation techniques for common-mode voltage reduction in the z-source ultra sparse matrix converters. IEEE Trans Power Electron 34(1):958–970

    Article  Google Scholar 

  14. Sri Vidhya D, Venkatesan T (2018) Quasi-Z-source indirect matrix converter fed induction motor drive for flow control of dye in paper mill. IEEE Trans Power Electron 33(2):1476–1486

    Article  Google Scholar 

  15. Li X, Sun Y, Zhang J, Su M, Huang S (2017) Modulation methods for indirect matrix converter extending the input reactive power range. IEEE Trans Power Electron 32(6):4852–4863

    Article  Google Scholar 

  16. Alizadeh M, Kojori SS (2018) Small-signal stability analysis, and predictive control of Z-source Matrix Converter feeding a PMSG-WECS. Int J Electr Power Energy Syst 95:601–616

    Article  Google Scholar 

  17. Liu Y, Ge B, Abu-Rub H, Blaabjerg F (2018) Single-phase Z-source/quasi-Z-source inverters and converters. IEEE Ind Electron Mag 12(2):6–23

    Article  Google Scholar 

  18. Liu Y, Liang W, Ge B, Abu-Rub H, Nie N (2018) Quasi-Z-source three-to-single-phase matrix converter and ripple power compensation based on model predictive control. IEEE Trans Ind Electron 65(6):5146–5156

    Article  Google Scholar 

  19. Dabour SM, Abdel-Khalik AS, Ahmed S, Massoud AM, Allam SM (2018) Common-mode voltage reduction for space vector modulated three- to five-phase indirect matrix converter. Int J Electr Power Energy Syst 95:266–274

    Article  Google Scholar 

  20. Zhou M, Sun Y, Su M, Li X, Liu F, Liu Y (2018) A single-phase buck-boost AC-AC converter with three legs. J Electr Eng Technol 13(2):838–848

    Google Scholar 

  21. Saeed N, Ibrar A, Saeed A (2017) A review on industrial applications of Z-source inverter. J Power Energy Eng 05(09):14–31

    Article  Google Scholar 

  22. M. Li, Y. Liu, and H. Abu-Rub, “Optimizing control strategy of quasi-Z source indirect matrix converter for induction motor drives,” IEEE Int. Symp. Ind. Electron., no. DMC, pp. 1663–1668, 2017.

  23. Hakemi A, Monfared M (2017) Very high gain three-phase indirect matrix converter with two Z-source networks in its structure. IET Renew Power Gener 11(5):633–641

    Article  Google Scholar 

  24. Alizadeh M, Kojori SS (2017) Modified predictive control for both normal and LVRT operations of a Quasi-Z-Source Matrix Converter based WECS. Control Eng Pract 68:1–14

    Article  Google Scholar 

  25. Ellabban O, Abu-Rub H, Bayhan S (2016) Z-source matrix converter: an overview. IEEE Trans Power Electron 31(11):7436–7450

    Article  Google Scholar 

  26. Pinto SF, Mendes PV, Fernando Silva J (2016) Modular matrix converter based solid state transformer for smart grids. Electr Power Syst Res 136:189–200

    Article  Google Scholar 

  27. Liu S, Ge B, Liu Y, Abu-Rub H, Balog RS, Sun H (2016) Modeling, analysis, and parameters design of LC-filter-integrated quasi-Z-source indirect matrix converter. IEEE Trans Power Electron 31(11):7544–7555

    Article  Google Scholar 

  28. Liu S, Ge B, You X, Jiang X, Abu-Rub H, Peng FZ (2015) A novel quasi-Z-source indirect matrix converter. Int J Circuit Theory Appl 43(4):438–454

    Article  Google Scholar 

  29. Ellabban O, Abu-Rub H, Ge B (2015) A quasi-Z-source direct matrix converter feeding a vector controlled induction motor drive. IEEE J Emerg Sel Top Power Electron 3(2):339–348

    Article  Google Scholar 

  30. Takahashi N, Liu S, Ge B, Jiang X, Abu-Rub H, Peng F (2014) Modeling, analysis, and motor drive application of quasi-Z-source indirect matrix converter. COMPEL Int J Comput Math Electr Electron Eng 52:487

    Google Scholar 

  31. Empringham L, Kolar JW, Rodriguez J, Wheeler PW, Clare JC (2013) Technological issues and industrial application of matrix converters: a review. IEEE Trans Ind Electron 60(10):4260–4271

    Article  Google Scholar 

  32. Liu S, Ge B, Jiang X, Abu-Rub H, Peng FZ (2014) Comparative evaluation of three Z-source/quasi-Z-source indirect matrix converters. IEEE Trans Ind Electron 62(2):692–701

    Article  Google Scholar 

  33. He L, Duan S, Peng F (2013) Safe-commutation strategy for the novel family of quasi-Z-source AC–AC converter. IEEE Trans Ind Inform 9(3):1538–1547

    Article  Google Scholar 

  34. Friedli T, Kolar JW, Rodriguez J, Wheeler PW (2012) Comparative evaluation of three-phase AC–AC matrix converter and voltage DC-link back-to-back converter systems. IEEE Trans Ind Electron 59(12):4487–4510

    Article  Google Scholar 

  35. Nguyen M, Lim Y, Kim Y (2012) A modified single-phase quasi-Z-source AC–AC converter. IEEE Trans Power Electron 27(1):201–210

    Article  Google Scholar 

  36. BharaniKumar R, Adhisree VV, NirmalKumar A (2012) Performance analysis of Z-source matrix converter by implementing different PWM schemes. J Electr Eng 12(3):193–201

    Google Scholar 

  37. Liu X, Loh PC, Wang P, Han X (2012) Improved modulation schemes for indirect Z-source matrix converter with sinusoidal input and output waveforms. IEEE Trans Power Electron 27(9):4039–4050

    Article  Google Scholar 

  38. Ge B, Lei Q, Qian W, Peng FZ (2012) A family of Z-source matrix converters. IEEE Trans Ind Electron 59(1):35–46

    Article  Google Scholar 

  39. Perez MA, Rojas CA, Rodriguez J, Abu-Rub H (2012) A simple modulation scheme for a three-phase direct matrix converter. IEEE Int Symp Ind Electron 15:105–110

    Google Scholar 

  40. Rodriguez J, Rivera M, Kolar JW, Wheeler PW (2012) A review of control and modulation methods for matrix converters. IEEE Trans Ind Electron 59(1):58–70

    Article  Google Scholar 

  41. Wheeler PW, Rodríguez J, Clare JC, Empringham L, Weinstein A (2002) Matrix converters: a technology review. IEEE Trans Ind Electron 49(2):276–288

    Article  Google Scholar 

  42. Manivannan S, Saravanakumar N, Vijeyakumar KN (2021) Three-phase power conversion using quasi Z source direct matrix converter (QZSDMC) for fixed frequency to variable frequency using direct duty ratio based pulse width modulation technique. Int J Electron. https://doi.org/10.1080/00207217.2021.1966668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manivannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, S., Saravanakumar, N. & Vijeyakumar, K.N. Three-phase to K-phase power conversion using voltage fed quasi Z source direct matrix converter with maximum constant boost control technique. Electr Eng 104, 3603–3617 (2022). https://doi.org/10.1007/s00202-022-01572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01572-x

Keywords

Navigation