Skip to main content

Advertisement

Log in

Hybrid dual output LLC converter with low slave output rectifier current

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, a new hybrid dual output LLC DC-DC converter is proposed. The proposed converter has a simple structure and combines the advantages of conventional LLC and PWM converters. The proposed converter reduces the effective currents of the transformer slave output winding, slave output rectifiers and slave output filter capacitor using just one output filter inductor as in continuous conduction mode PWM converters. Detailed theoretical analysis has been made and verified with an experimental switched mode power supply having 55.8 V–400 W and 12 V–50 W isolated and independent outputs. The effect of using filter inductance at the slave output rectifier of the LLC converter has been investigated and the necessary conditions for soft switching operation have been obtained. The proposed converter achieves soft switching for all different output power values. Compared to the conventional dual output LLC converter, the effective currents of the LLC transformer slave output winding and the slave output rectifiers are reduced from 2.45 to 1.8 Arms. The peak efficiency of the proposed dual output LLC converter is measured as 97.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zeng J, Zhang G, Yu SS, Zhang B, Zhang Y (2020) LLC Resonant converter topologies and industrial applications—a review. Chin J Electr Eng 6(3):73–84

    Article  Google Scholar 

  2. Zhang G, Zeng J, Xiao W, Yu SS, Zhang B, Zhang Y (2021) A self-protected single-stage LLC resonant rectifier. IEEE J Emerg Sel Topics Power Electron 9(3):3361–3372. https://doi.org/10.1109/JESTPE.2020.3024893

    Article  Google Scholar 

  3. Ahmad U, Cha H, Naseem N (2021) Integrated current balancing transformer based input-parallel output-parallel LLC resonant converter modules. IEEE Trans Power Electron 36(5):5278–5289. https://doi.org/10.1109/TPEL.2020.3026929

    Article  Google Scholar 

  4. Lin R, Huang L (2018) Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer. IEEE Trans Ind Appl 54(2):1756–1764. https://doi.org/10.1109/TIA.2017.2771728

    Article  Google Scholar 

  5. Mishima T, Mizutani H, Nakaoka M (2017) A sensitivity-improved PFM LLC resonant full-bridge DC–DC converter With LC antiresonant circuitry. IEEE Trans Power Electron 32(1):310–324. https://doi.org/10.1109/TPEL.2016.2524640

    Article  Google Scholar 

  6. Pandey R, Singh B (2021) A cuk converter and resonant LLC converter based E-bike charger for wide output voltage variations. IEEE Trans Ind Appl 57(3):2682–2691. https://doi.org/10.1109/TIA.2021.3066089

    Article  Google Scholar 

  7. Mu M, Lee FC (2016) Design and optimization of a 380–12 V high-frequency, high-current LLC converter with GaN devices and planar matrix transformers. IEEE J Emerg Sel Topics Power Electron 4(3):854–862. https://doi.org/10.1109/JESTPE.2016.2586964

    Article  Google Scholar 

  8. Fei C, Gadelrab R, Li Q, Lee FC (2019) High-frequency three-phase interleaved LLC resonant converter With GaN devices and integrated planar magnetics. IEEE J Emerg Sel Topics Power Electron 7(2):653–663. https://doi.org/10.1109/JESTPE.2019.2891317

    Article  Google Scholar 

  9. Deng J, Li S, Hu S, Mi CC, Ma R (2014) Design methodology of LLC resonant converters for electric vehicle battery chargers. IEEE Trans Veh Technol 63(4):1581–1592. https://doi.org/10.1109/TVT.2013.2287379

    Article  Google Scholar 

  10. Chen X et al (2020) A natural bidirectional input-series–output-parallel LLC-DCX converter with automatic power sharing and power limitation capability for Li-Ion battery formation and grading system. IEEE J Emerg Sel Topics Power Electron 8(4):3618–3632. https://doi.org/10.1109/JESTPE.2019.2941583

    Article  Google Scholar 

  11. Ahmed MH, Nabih A, Lee FC, Li Q (2020) Low-loss integrated inductor and transformer structure and application in regulated LLC converter for 48-V bus converter. IEEE J Emerg Sel Topics Power Electron 8(1):589–600. https://doi.org/10.1109/JESTPE.2019.2952878

    Article  Google Scholar 

  12. Lee J, Kim J, Kim J, Baek J, Moon G (2015) A high-efficiency PFM half-bridge converter utilizing a half-bridge LLC converter under light load conditions. IEEE Trans Power Electron 30(9):4931–4942. https://doi.org/10.1109/TPEL.2014.2365625

    Article  Google Scholar 

  13. Ta LAD, Dao ND, Lee D (2020) High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans Power Electron 35(8):8324–8334. https://doi.org/10.1109/TPEL.2020.2968084

    Article  Google Scholar 

  14. Shah SS, Rastogi SK, Bhattacharya S (2021) Paralleling of LLC resonant converters. IEEE Trans Power Electron 36(6):6276–6287. https://doi.org/10.1109/TPEL.2020.3040621

    Article  Google Scholar 

  15. Rashidi M et al (2020) "Design and implementation of a LLC resonant solid-state transformer. IEEE Trans Ind Appl 56(4):3855–3864. https://doi.org/10.1109/TIA.2020.2982847

    Article  Google Scholar 

  16. Chen Y, Li Z, Liang R (2018) A novel soft-switching interleaved coupled-inductor boost converter with only single auxiliary circuit. IEEE Trans Power Electron 33(3):2267–2281. https://doi.org/10.1109/TPEL.2017.2692998

    Article  Google Scholar 

  17. Rahimi S, Rezvanyvardom M, Mirzaei A (2019) A fully soft-switched bidirectional DC–DC converter with only one auxiliary switch. IEEE Trans Industr Electron 66(8):5939–5947. https://doi.org/10.1109/TIE.2018.2873535

    Article  Google Scholar 

  18. Akhlaghi B, Farzanehfard H (2018) Family of ZVT interleaved converters with low number of components. IEEE Trans Industr Electron 65(11):8565–8573. https://doi.org/10.1109/TIE.2018.2808915

    Article  Google Scholar 

  19. Bodur H, Yeşilyurt H, Akboy E, Ting N-S (2019) A novel active snubber cell for soft-switched isolated PWM half-bridge, converter. Electr Eng 102:1821–1830

    Article  Google Scholar 

  20. Huang D, Ji S, Lee F-C (2014) LLC resonant converter with matrix transformer. IEEE Trans on Power Electron 29(8):4339–4347

    Article  Google Scholar 

  21. Yu X, Su J, Guo S, Zhong S, Shi Y, Lai J (2020) Properties and synthesis of lossless snubbers and passive soft-switching PWM converters. IEEE Trans Power Electron 35(4):3807–3827. https://doi.org/10.1109/TPEL.2019.2939928

    Article  Google Scholar 

  22. Sharifi S, Jabbari M, Farzanehfard H (2017) A new family of single-switch ZVS resonant converters. IEEE Trans Ind Electron 64(6):4539–4548. https://doi.org/10.1109/TIE.2017.2674632

    Article  Google Scholar 

  23. Faraji R, Farzanehfard H, Esteki M, Khajehoddin SA (2021) A lossless passive snubber circuit for three-Port DC–DC converter. IEEE J Emerg Sel Topics Power Electron 9(2):1905–1914. https://doi.org/10.1109/JESTPE.2020.3017619

    Article  Google Scholar 

  24. Roes MGL, Duarte JL, Hendrix MAM (2011) Disturbance observer-based control of a dual-output LLC converter for solid-state lighting applications. IEEE Trans Power Electron 26(7):2018–2027. https://doi.org/10.1109/TPEL.2010.2101086

    Article  Google Scholar 

  25. Demirel İ, Erkmen B (2014) a very low-profile dual output LLC resonant converter for LCD/LED TV applications. IEEE Trans Power Electron 29(7):3514–3524

    Article  Google Scholar 

  26. Li G, Xia J, Wang K, Deng Y, He X, Wang Y (2019) Hybrid modulation of parallel-series LLC resonant converter and phase shift full-bridge converter for a dual-output DC-DC converter. IEEE J Emerg Sel Topics Power Electron 7(2):833–842

    Article  Google Scholar 

  27. Wang L, Wang H, Xue B, Zhou M (2022) H5-bridge based single-input-dual-output LLC converter with wide output voltage range. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2021.3097597

    Article  Google Scholar 

  28. Kinoshita Y, Haga H (2021) Isolated single-input dual-output LLC converter for a wide range of voltage gain using mode transition. IEEJ J Ind Appl 10(3):357–369. https://doi.org/10.1541/ieejjia.20010311

    Article  Google Scholar 

  29. Wei Y, Luo Q, Du X, Altin N, Nasiri A, Alonso JM (2020) A dual half-bridge LLC resonant converter with magnetic control for battery charger application. IEEE Trans Power Electron 35(2):2196–2207. https://doi.org/10.1109/TPEL.2019.2922991

    Article  Google Scholar 

  30. Liu C et al (2013) High-efficiency hybrid full-bridge–half-bridge converter with shared ZVS lagging leg and dual outputs in series. IEEE Trans Power Electron 28(2):849–861. https://doi.org/10.1109/TPEL.2012.2205019

    Article  Google Scholar 

  31. Chen Y, Kang Y (2010) A fully regulated dual-output DC–DC converter with special-connected two transformers (SCTTs) cell and complementary pulsewidth modulation–PFM (CPWM-PFM). IEEE Trans Power Electron 25(5):1296–1309. https://doi.org/10.1109/TPEL.2009.2038160

    Article  Google Scholar 

  32. Cho S, Kim C, Han S (2012) High-efficiency and low-cost tightly regulated dual-output LLC resonant converter. IEEE Trans Ind Electron 59(7):2982–2991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Yeşilyurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Tron A.Ş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeşilyurt, H. Hybrid dual output LLC converter with low slave output rectifier current. Electr Eng 104, 3241–3251 (2022). https://doi.org/10.1007/s00202-022-01545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01545-0

Keywords

Navigation