Skip to main content

Advertisement

Log in

A high-performance dual-stator permanent-magnet vernier machine for propulsion applications

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes two structures of dual-stator permanent-magnet vernier machines (VMs) for high-torque low-speed applications. The proposed structures consist of dual-sided rotor which is sandwiched by inner and outer stators. These topologies include 22 and 46 consequent-pole magnets in the rotor and 24 and 48 stator slots for Design A and Design B, respectively. Design A is an improved structure of dual stator VM and Design B is a novel topology of a dual stator VM that can deliver considerably higher back-EMF and torque than Design A. The only drawback in Design B is lower power factor. The characteristics and performance parameters of the proposed VMs are evaluated using FEA. Sensitivity analysis is used to figure out the optimum dimensions of the magnets. In fact, two combinations of slot/pole number of the vernier machines are investigated as Design A and Design B. The capabilities of the proposed vernier machines are presented in a fair comparison with other VMs namely as consequent pole dual rotor VM (CPDRVM), consequent pole dual stator VM (CPDSVM) and dual stator spoke array VM (DSSAVM). In this regard, the key machine features considered for comparison are back-EMF, torque, torque per magnet volume (TPMV), power factor, loss, and efficiency profiles. The proposed structure (Design B) generates higher torque and TPMV compared to the other studied machines while Design A can achieve a higher power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Parameter:

Description

Back-EMF:

Back electromagnetic force

DSVM:

Dual-stator vernier machine

DSSAVM:

Dual-stator spoke-array vernier machine

CPDRVM:

Consequent pole dual rotor vernier machine

CPDSVM:

Consequent pole dual stator vernier machine

FEA:

Finite-element analysis

PM:

Permanent magnet

PMVM:

Permanent-magnet vernier machine

PF:

Power factor

TPMV:

Torque per magnet volume

VM:

Vernier machine

References

  1. Cheng M, Han P, Hua W (2017) General airgap field modulation theory for electrical machines. IEEE Trans Industr Electron 64(8):6063–6074

    Article  Google Scholar 

  2. Chen H, Tang T, Han J, Aït-Ahmed N, Machmoum M, El-Hadi Zaïm M (2019) Current waveforms analysis of toothed pole Doubly Salient Permanent Magnet (DSPM) machine for marine tidal current applications. Int J Electr Power Energy Syst 106(2019):242–253 (ISSN 0142-0615)

    Article  Google Scholar 

  3. Chen H, Li Q, Tang S, AIT-Ahmed N, Han J, Wang T, Zhou Z, Tang T, Benbouzid M (2021) Adaptive super-twisting control of doubly salient permanent magnet generator for tidal stream turbine. Int J Elect Power Energy Syst 128:106772 (ISSN 0142-0615)

    Article  Google Scholar 

  4. Babaghorbani B, Taghi Beheshti M, Ali Talebi H (2021) A Lyapunov-based model predictive control strategy in a permanent magnet synchronous generator wind turbine. Int J Elect Power Energy Syst 130:106972 (ISSN 0142-0615)

    Article  Google Scholar 

  5. Zhang W, Dai L, Xiang ZN, Wu QI, Huang S, Gao J (2021) “Optimal design of hydro permanent magnet synchronous generators for improving annual cycle efficiency. Int J Elect Power Energy Syst 131:107096 (ISSN 0142-0615)

    Article  Google Scholar 

  6. Naderi P, Sharouni S, Moradzadeh M (2019) Analysis of partitioned stator flux-switching permanent magnet machine by magnetic equivalent circuit. Int J Elect Power Energy Syst 111:369–381 (ISSN 0142-0615)

    Article  Google Scholar 

  7. Li D, Qu R, Xu W, Li J, Lipo TA (2015) Design procedure of dual-stator spoke-array Vernier permanent-magnet machines. IEEE Trans Ind Appl 51(4):2972–2983

    Article  Google Scholar 

  8. Liu Y, Zhu ZQ. (2017) Magnetic gearing effect in Vernier permanent magnet synchronous machines. In: 2017 IEEE energy conversion congress and exposition (ECCE) pp 5025-5032, IEEE

  9. Park J, St Paul J, Chang T, Hwang J. Yoon (2020) Design and comparative survey of high torque coaxial permanent magnet coupling for tidal current generator. Int J Elect Power Energy Syst 120:105966 (ISSN 0142-0615)

    Article  Google Scholar 

  10. Li D, Qu R, Zhu Z (2014) Comparison of Halbach and Dual-Side Vernier Permanent Magnet Machines. IEEE Trans Magn 50(2):801–804

    Article  Google Scholar 

  11. Zou T, Li D, Chen C, Qu R, Jiang D (2018) A multiple working harmonic pm Vernier machine with enhanced flux-modulation effect. IEEE Trans Magn 54(11):1–5 (Art no. 8109605)

    Google Scholar 

  12. Zou T, Li D, Qu R, Li J, Jiang D (2017) Analysis of a dual-rotor, toroidal-winding, axial-flux Vernier permanent magnet machine. IEEE Trans Ind Appl 53(3):1920–1930

    Article  Google Scholar 

  13. Gao Y, Qu R, Li D, Fang H, Li J, Kong W (2017) A novel dual-stator vernier permanent magnet machine. IEEE Trans Magn 53(11):1–5 (Art no. 8110105)

    Google Scholar 

  14. Wang Q, Niu S, Ching TW (2018) A new double-winding vernier permanent magnet wind power generator for hybrid AC/DC microgrid application. IEEE Trans Magn 54(11):1–5 (Art no. 8108305)

    Google Scholar 

  15. Zou T, Li D, Qu R, Jiang D (2017) Performance comparison of surface and spoke-type flux-modulation machines with different pole ratios. IEEE Trans Magn 53(6):1–5 (Art no. 7402605)

    Google Scholar 

  16. Du ZS, Lipo TA (2015) High torque density ferrite permanent magnet vernier motor analysis and design with demagnetization consideration. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE) pp 6082-6089, IEEE

  17. Liu W, Lipo TA. (2017) A family of vernier permanent magnet machines utilizing an alternating rotor leakage flux blocking design. In: 2017 IEEE energy conversion congress and exposition (ECCE) pp 2461-2468, IEEE

  18. Zhao W, Ma A, Ji J, Chen X, Yao T (2020) Multiobjective optimization of a double-side linear vernier pm motor using response surface method and differential evolution. IEEE Trans Industr Electron 67(1):80–90

    Article  Google Scholar 

  19. Zhang H, Kou B, Zhu ZQ, Qu R, Luo J, Shao Y (2018) Thrust ripple analysis on toroidal-winding linear permanent magnet vernier machine. IEEE Trans Industr Electron 65(12):9853–9862

    Article  Google Scholar 

  20. Zhao W, Wu B, Chen Q, Zhu J (2018) Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM. IEEE Trans Industr Electron 65(9):7458–7467

    Article  Google Scholar 

  21. Li D, Qu R, Lipo TA (2014) High-power-factor vernier permanent-magnet machines. IEEE Trans Ind Appl 50(6):3664–3674

    Article  Google Scholar 

  22. Kim B, Lipo TA (2014) Operation and design principles of a PM Vernier Motor. IEEE Trans Ind Appl 50(6):3656–3663

    Article  Google Scholar 

  23. Allahyari A, Torkaman H (2020) A novel high-performance consequent pole dual rotor permanent magnet vernier machine. IEEE Trans Energy Conversion. https://doi.org/10.1109/TEC.2020.2980146

    Article  Google Scholar 

  24. Gorginpour H (2019) Dual-stator consequent-pole Vernier PM motor with improved power factor. IET Electr Power Appl 13(5):652–661. https://doi.org/10.1049/iet-epa.2018.5519

    Article  Google Scholar 

  25. Sharouni S, Naderi P, Hedayati M, Hajihosseini P (2020) Demagnetization fault detection by a novel and flexible modeling method for outer rotor permanent magnet synchronous machine. Int J Elect Power Energy Syst 116:105539 (ISSN 0142-0615)

    Article  Google Scholar 

  26. Babetto C, Bianchi N, Benedetti G (2019) Design and Optimization of a PMASR Motor for Low-Voltage E-Scooter Applications In: 2019 IEEE International Electric Machines & Drives Conference (IEMDC), doi: https://doi.org/10.1109/IEMDC.2019.8785177.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Allahyari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahyari, A., Mahmoudi, A., Torkaman, H. et al. A high-performance dual-stator permanent-magnet vernier machine for propulsion applications. Electr Eng 104, 3253–3263 (2022). https://doi.org/10.1007/s00202-022-01539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01539-y

Keywords

Navigation