Skip to main content

Advertisement

Log in

Switched capacitors-based single-phase seven-level photovoltaic inverter with self-voltage balancing

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel switched capacitors-based seven-level photovoltaic inverter having self-voltage boosting with reduced power switches is analyzed. It has voltage boosting capability with a possibility of 1.5 times of maximum voltage level to input DC voltage. In the proposed topology, higher voltage gain does not impose high voltage stress on any power switches. Therefore, the peak inverse voltage (PIV) of all power switches does not exceed the input source voltage. Furthermore, only a single source is enough, and voltage balancing of capacitors is not required as capacitors are balanced through the charging and discharging phenomenon. A simple modulation technique is used for generating a suitable switching pulses for the inverter. A comparative analysis is presented with other switched capacitors multilevel inverter in terms of the number of power switches, total standing voltage, PIV, and cost function. The closed-loop structure of proposed inverter is investigated with specified controlling and implemented in MATLAB/Simulink and validated through hardware-in-the-loop real-time simulation in OPAL-RT. Additionally, an experimental prototype of the proposed topology in open as well as closed loop is built and tested to validate its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596. https://doi.org/10.1109/TIE.2010.2043039

    Article  Google Scholar 

  2. Babaei E (2008) A cascade multilevel converter topology with reduced number of switches. IEEE Trans Power Electron 23(6):2657–2664. https://doi.org/10.1109/TPEL.2008.2005192

    Article  Google Scholar 

  3. Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):3932–3939. https://doi.org/10.1109/TIE.2013.2286561

    Article  Google Scholar 

  4. Barbosa P, Steimer P, Steinke J, Winkelnkemper M, Celanovic N (2005) Active-neutral-point-clamped (ANPC) multilevel converter technology. In: 2005 European conference on power electronics and applications, p 10. https://doi.org/10.1109/EPE.2005.219713

  5. Gupta K, Jain S (2012) Topology for multilevel inverters to attain maximum number of levels from given dc sources. IET Power Electron 5:435–446. https://doi.org/10.1049/iet-pel.2011.0178

    Article  Google Scholar 

  6. He L, Cheng C (2016) A flying-capacitor-clamped five-level inverter based on bridge modular switched-capacitor topology. IEEE Trans Ind Electron 63(12):7814–7822. https://doi.org/10.1109/TIE.2016.2607155

    Article  Google Scholar 

  7. Hinago Y, Koizumi H (2012) A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Trans Ind Electron 59(2):878–887. https://doi.org/10.1109/TIE.2011.2158768

    Article  Google Scholar 

  8. Kumar PR, Kaarthik RS, Gopakumar K, Leon JI, Franquelo LG (2015) Seventeen-level inverter formed by cascading flying capacitor and floating capacitor H-bridges. IEEE Trans Power Electron 30(7):3471–3478. https://doi.org/10.1109/TPEL.2014.2342882

    Article  Google Scholar 

  9. Lai JS, Peng FZ (1996) Multilevel converters—a new breed of power converters. IEEE Trans Ind Appl 32(3):509–517. https://doi.org/10.1109/28.502161

    Article  Google Scholar 

  10. Lee SS, Bak Y, Kim SM, Joseph A, Lee KB (2019) New family of boost switched-capacitor seven-level inverters (BSC7LI). IEEE Trans Power Electron 34(11):10471–10479. https://doi.org/10.1109/TPEL.2019.2896606

    Article  Google Scholar 

  11. Lee SS, Lim CS, Siwakoti YP, Lee KB (2020) Hybrid 7-level boost active-neutral-point-clamped (H-7L-BANPC) inverter. IEEE Trans Circuits Syst II Express Briefs 67(10):2044–2048. https://doi.org/10.1109/TCSII.2019.2946860

    Article  Google Scholar 

  12. Liu J, Wu J, Zeng J, Guo H (2017) A novel nine-level inverter employing one voltage source and reduced components as high-frequency AC power source. IEEE Trans Power Electron 32(4):2939–2947. https://doi.org/10.1109/TPEL.2016.2582206

    Article  Google Scholar 

  13. Malinowski M, Gopakumar K, Rodriguez J, Pérez MA (2010) A survey on cascaded multilevel inverters. IEEE Trans Ind Electron 57(7):2197–2206. https://doi.org/10.1109/TIE.2009.2030767

    Article  Google Scholar 

  14. Nabae A, Takahashi I, Akagi H (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl 17(5):518–523. https://doi.org/10.1109/TIA.1981.4503992

    Article  Google Scholar 

  15. Nair RV, Rahul SA, Kaarthik RS, Kshirsagar A, Gopakumar K (2017) Generation of higher number of voltage levels by stacking inverters of lower multilevel structures with low voltage devices for drives. IEEE Trans Power Electron 32(1):52–59. https://doi.org/10.1109/TPEL.2016.2528286

    Article  Google Scholar 

  16. Peng FZ (2001) A generalized multilevel inverter topology with self voltage balancing. IEEE Trans Ind Appl 37(2):611–618. https://doi.org/10.1109/28.913728

    Article  Google Scholar 

  17. Raman SR, Cheng KWE, Ye Y (2018) Multi-input switched-capacitor multilevel inverter for high-frequency AC power distribution. IEEE Trans Power Electron 33(7):5937–5948. https://doi.org/10.1109/TPEL.2017.2742525

    Article  Google Scholar 

  18. Roshankumar P, Rajeevan PP, Mathew K, Gopakumar K, Leon JI, Franquelo LG (2012) A five-level inverter topology with single-DC supply by cascading a flying capacitor inverter and an H-bridge. IEEE Trans Power Electron 27(8):3505–3512. https://doi.org/10.1109/TPEL.2012.2185714

    Article  Google Scholar 

  19. Samadaei E, Gholamian SA, Sheikholeslami A, Adabi J (2016) An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components. IEEE Trans Ind Electron 63(11):7148–7156. https://doi.org/10.1109/TIE.2016.2520913

    Article  Google Scholar 

  20. Samadaei E, Sheikholeslami A, Gholamian SA, Adabi J (2018) A square t-type (ST-type) module for asymmetrical multilevel inverters. IEEE Trans Power Electron 33(2):987–996. https://doi.org/10.1109/TPEL.2017.2675381

  21. Siddique MD, Mekhilef S, Shah NM, Ali JSM, Blaabjerg F (2020) A new switched capacitor 7L inverter with triple voltage gain and low voltage stress. IEEE Trans Circuits Syst II Express Briefs 67(7):1294–1298. https://doi.org/10.1109/TCSII.2019.2932480

    Article  Google Scholar 

  22. Siwakoti YP, Mahajan A, Rogers DJ, Blaabjerg F (2019) A novel seven-level active neutral-point-clamped converter with reduced active switching devices and DC-link voltage. IEEE Trans Power Electron 34(11):10492–10508. https://doi.org/10.1109/TPEL.2019.2897061

    Article  Google Scholar 

  23. Sun X, Wang B, Zhou Y, Wang W, Du H, Lu Z (2016) A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans Ind Electron 63(11):7184–7194. https://doi.org/10.1109/TIE.2016.2557317

    Article  Google Scholar 

  24. Taghvaie A, Adabi J, Rezanejad M (2018) A self-balanced step-up multilevel inverter based on switched-capacitor structure. IEEE Trans Power Electron 33(1):199–209. https://doi.org/10.1109/TPEL.2017.2669377

    Article  Google Scholar 

  25. Zeng J, Lin W, Cen D, Liu J (2020) Novel k-type multilevel inverter with reduced components and self-balance. IEEE J Emerg Sel Top Power Electron 8(4):4343–4354. https://doi.org/10.1109/JESTPE.2019.2939562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Gupta, K.K. & Singh, S. Switched capacitors-based single-phase seven-level photovoltaic inverter with self-voltage balancing. Electr Eng 104, 3107–3117 (2022). https://doi.org/10.1007/s00202-022-01535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01535-2

Keywords

Navigation