Skip to main content
Log in

Nonlinear adaptive normalized Huber control algorithm for 5-level distribution static compensator

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new normalized Huber adaptive control algorithm for shunt compensation. A 5-level cascaded multilevel inverter (CHB-MLI) is controlled as a shunt active power filter (SAPF) unit for a medium voltage distribution system. The proposed algorithm is designed, modelled, and tested to control the SAPF unit under normal and distorted grid conditions. It is employed to extract the fundamental active power component of load current. This extracted effective component is used to generate source reference currents by multiplying with the unit vector template. Furthermore, the switching of CHB-MLI is performed using phase-shifted PWM scheme. The algorithm helps to mitigate the reactive power and unwanted harmonics generated by the nonlinear load. A single-phase scale-down prototype model is developed for experimental investigation and testing purpose in the laboratory. The associated voltage and current sensors and control circuits are controlled by the dSpace 1104 digital microprocessor. Simulation and experimental results show good performance of the proposed algorithm in steady-state and dynamic load conditions. A fair performance comparison is also done with other conventional adaptive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

source current (is), load current (iL) and compensating current (ic) wrt PCC voltage (Vs) THD of 2.8%, 30.1% and 1.8% in is, il, Vs

Fig. 13
Fig. 14

source voltage (Vs), source current (is), load current (iL) and compensating current (ic)

Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rodriguez J, Franquelo LG, Kouro S et al (2009) Multilevel converters: an enabling technology for high-power applications. Proc IEEE 97(11):1786–1817. https://doi.org/10.1109/JPROC.2009.2030235

    Article  Google Scholar 

  2. Franquelo LG, Rodriguez J, Leon JI, Kouro S, Portillo R, Prats MAM (2008) The age of multilevel converters arrives. Ind Electron Mag IEEE 2(2):28–39. https://doi.org/10.1109/MIE.2008.923519s

    Article  Google Scholar 

  3. Nabae A, Takahashi I, Akagi H (1980) Neutral-point-clamped PWM inverter. In: Conference on record IEEE IAS annual meeting, Cincinnati, OH, vol 3, pp 761–766. https://doi.org/10.1109/TIA.1981.4503992

  4. Meynard TA, Foch H (1992) Multi-level conversion: high voltage choppers and voltage-source inverters. In: Proceedings of the IEEE power electronics specialist conference, pp 397–403. https://doi.org/10.1109/PESC.1992.254717

  5. Lavieville JP, Carrere P, Meynard T (1997) Electronic circuit for converting electrical energy and a power supply installation making use thereof, U.S. Patent 5,668,711

  6. Malinowski M, Gopakumar K, Rodriguez J, Perez MA (2010) A survey on cascaded multilevel inverters. IEEE Trans Ind Electron 57(7):2197–2206. https://doi.org/10.1109/TIE.2009.2030767

    Article  Google Scholar 

  7. Tsunoda A, Hinago Y, Koizumi H (2014) Level-and phase-shifted PWM for seven-level switched-capacitor inverter using series/parallel conversion. IEEE Trans Ind Electron 61:4011–4021. https://doi.org/10.1109/TIE.2013.2286559

    Article  Google Scholar 

  8. Akagi H, Watanabe EH, Aredes M (2017) Instantaneous power theory and applications to power conditioning. Wiley, NJ

    Book  Google Scholar 

  9. Gonzalez-Espin F, Figueres E, Garcera G (2012) An adaptive synchronous reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Trans Ind Electron 59(6):2718–2731. https://doi.org/10.1109/TIE.2011.2166236

    Article  Google Scholar 

  10. Herrera RS, Salmerón P, Kim H (2008) Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results. IEEE Trans Ind Electron 55(1):184–196. https://doi.org/10.1109/TIE.2007.905959

    Article  Google Scholar 

  11. Singh A, Singh B, Mittal AP (2010) Performance and control of converter interfaced distribution resources. In: Proceedings of the IEEE IICPE conference, pp 1–6. https://doi.org/10.1109/IICPE.2011.5728124

  12. Pouresmaeil E, Montesinos-Miracle D, Gomis-Bellmunt O, Sudrià-Andreu A (2011) Instantaneous active and reactive current control technique of shunt active power filter based on the three-level NPC inverter. Eur Trans Electr Power 21(7):2007–2022. https://doi.org/10.1002/etep.536

    Article  Google Scholar 

  13. Singh B, Arya S, Verma P (2014) An implementation of double-frequency oscillation cancellation technique in control of DSTATCOM. Int Trans Electr Energy Syst 24:796–807. https://doi.org/10.1002/etep.1735

    Article  Google Scholar 

  14. Singh B, Arya S (2013) Composite observer-based control algorithm for distribution static compensator in four-wire supply system. IET Power Electron 6(2):251–260. https://doi.org/10.1049/iet-pel.2012.0412

    Article  Google Scholar 

  15. Valdez-Fernandez A, Martinez P, Escobar G, Limones-Pozos C, Sosa J (2013) A model-based controller for the cascade H-bridge multilevel converter used as a shunt active filter. IEEE Trans Ind Electron 60(11):5019–5028. https://doi.org/10.1109/TIE.2012.2218558

    Article  Google Scholar 

  16. Arya S, Singh B (2015) Implementation of kernel incremental learning algorithm in distribution static compensator. IEEE Trans Power Electron 30(3):1157–1169. https://doi.org/10.1109/TPEL.2014.2315495

    Article  Google Scholar 

  17. Chittora P, Singh A, Singh M (2016) Performance evaluation of a new Kalman filter based least mean square algorithm for power quality improvement. In: International conference on power electronics, intelligent control and energy systems (ICPEICES), Delhi, India, pp 1–5. https://doi.org/10.1109/ICPEICES.2016.7853382

  18. Badoni M, Singh A, Singh B (2016) Adaptive neuro fuzzy inference system least-mean-square-based control algorithm for DSTATCOM. IEEE Trans Ind Inf 12(2):483–492. https://doi.org/10.1109/TII.2016.2516823

    Article  Google Scholar 

  19. Chittora P, Singh A, Singh M (2017) Simple and efficient control of DSTATCOM in three phase four wire polluted grid system using MCCF-SOGI based controller. IET Gener Trans Distrib 12(5):1–10. https://doi.org/10.1049/ietgtd.2017.0901

    Article  Google Scholar 

  20. Badoni M, Singh A, Singh B (2016) An implementation of variable step-size least-mean-square based control algorithm for DSTATCOM. Int Trans Electr Energ Syst 26:1540–1554. https://doi.org/10.1049/iet-gtd.2017.0901

    Article  Google Scholar 

  21. Naidu TA, Arya SR, Al-Durra A, El-Fouly THM (2020) Comparative performance of dynamic voltage restorer using adaptive control algorithms with optimized error regulator gains. Int Trans Electr Energy Syst 2020:e12696. https://doi.org/10.1002/2050-7038.12696

    Article  Google Scholar 

  22. Alam SJ, Arya SR (2020) Control of UPQC based on steady state linear Kalman filter for compensation of power quality problems. Chin J Electr Eng 6(2):52–65. https://doi.org/10.23919/CJEE.2020.000011

    Article  Google Scholar 

  23. Patel SK, Arya SR, Maurya R (2019) Optimal step LMS-based control algorithm for DSTATCOM in distribution system. Electr Power Components Syst 47(8):675–691. https://doi.org/10.1080/15325008.2019.1602797

    Article  Google Scholar 

  24. Badoni M, Alka S, Bhim S, Hemant A (2020) Real-time implementation of active shunt compensator with adaptive SRLMMN control technique for power quality improvement in the distribution system. IET Gener Transm Distrib 14(8):1598–1606. https://doi.org/10.1049/iet-gtd.2019.0929,10.1049/iet-gtd.2019.0929

    Article  Google Scholar 

  25. Badoni M, Singh A, Singh B (2020) Power quality enhancement using Euclidean direction search based control technique. IEEE Trans Ind Electron 67(3):2231–2240. https://doi.org/10.1109/TIE.2019.2905835

    Article  Google Scholar 

  26. Shyu K, Yang M, Chen Y, Lin Y (2008) Model reference adaptive control design for a shunt active-power-filter system. IEEE Trans Ind Electron 55(1):97–106. https://doi.org/10.1109/IECON.2006.347931

    Article  Google Scholar 

  27. Modi G, Kumar S, Singh B (2020) Improved Widrow-Hoff based adaptive control of multi objective PV-DSTATCOM system. IEEE Trans Ind Appl 56(2):1930–1939. https://doi.org/10.1109/TIA.2019.2960732

    Article  Google Scholar 

  28. Jayasankar VN, Vinatha U (2020) Backstepping controller with dual self-tuning filter for single-phase shunt active power filters under distorted grid voltage condition. IEEE Trans Ind Appl 56(6):7176–7184. https://doi.org/10.1109/TIA.2020.3025520

    Article  Google Scholar 

  29. Trilochan P, Mrutyunjaya M, Kumar PA, Kumar SS (2016) Sparse LMS control algorithm for fuel cell based SAPF. In: 2016 IEEE Uttar Pradesh section international conference on electrical, computer and electronics engineering (UPCON), Varanasi, pp 72–77. https://doi.org/10.1109/UPCON.2016.7894627

  30. Lee H-S, Yim S-H, Song W-J (2017) z2-proportionate diffusion LMS algorithm with mean square performance analysis. Sig Process 131:154–160. https://doi.org/10.1016/j.sigpro.2016.06.011

    Article  Google Scholar 

  31. Li Z, Guan S (2018) Diffusion normalized Huber adaptive filtering algorithm. J Frankl Inst 355(8):3812–3825. https://doi.org/10.1016/j.jfranklin.2018.03.001

    Article  MathSciNet  MATH  Google Scholar 

  32. Waware M, Agarwal P (2012) Hardware realization of multilevel inverter-based active power filter. IETE J Res Sep 58(5):356–366. https://doi.org/10.4103/0377-2063.104152

    Article  Google Scholar 

  33. Ray S, Gupta N, Gupta RA (2018) Hardware realization of proportional-resonant regulator based advanced current control strategy for cascaded H-bridge inverter-based shunt active power filter. Int Trans Electr Energy Syst 66:e2714. https://doi.org/10.1002/etep.2714

    Article  Google Scholar 

  34. Petrus P (1999) Robust Huber adaptive filter. IEEE Trans Signal Process 47(4):1129–1133. https://doi.org/10.1109/78.752610

    Article  Google Scholar 

  35. Ciobotaru M, Teodorescu R, Blaabjerg F (2006) A new single-phase PLL structure based on second order generalized integrator. In: 2006 37th IEEE power electronics specialists conference, Jeju, Korea (South), pp 1–6. https://doi.org/10.1109/pesc.2006.1711988

Download references

Acknowledgement

The authors are thankful to Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Bansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Simulation parameters

Grid supply voltage, Vs = 110 V, nonlinear load of resistance and inductance, R = 10Ω and L = 50mH, dc bus capacitance = 2500 μF, kp = 1.2, ki = 0.1, Vdc-ref = 200 V, interfacing inductor Lf = 3mH, switching frequency fsw = 10 kHz, sampling time = 4 μs.

1.2 Experimental parameters

Grid supply voltage, Vs = 110 V, 1-phase 2-leg diode rectifier as nonlinear load of resistance and inductance, R = 40Ω and L = 8mH, dc bus capacitance = 3000 μF, kp = 1.2, ki = 0.1, Vdc-ref = 200 V, interfacing inductor, Lf = 3mH, switching frequency fsw = 10 kHz, sampling time = 50 μs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Singh, A. Nonlinear adaptive normalized Huber control algorithm for 5-level distribution static compensator. Electr Eng 104, 1635–1648 (2022). https://doi.org/10.1007/s00202-021-01424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01424-0

Keywords

Navigation