Skip to main content

Advertisement

Log in

Power conditioning using DSTATCOM in a single-phase SEIG-based isolated system

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The main focus of this work is power quality issues such as voltage and frequency fluctuation under load variation, source current distortion and power mismatch between utility and load in a single-phase SEIG-based isolated system. Therefore, this paper addressed the said problems using momentum least mean square control algorithm for single-phase SEIG working in stand-alone operation. The coordinated operation of battery energy storage system and dump load controller is also carried out for better battery performance. The features of this algorithm are its capability to extract desired signal from a fixed amplitude, non-stationary, linear frequency and variable amplitude sinusoidal signals in both noise-free and noisy conditions. The reference current tracking performance is improved by estimating the incremental convergence rate and the momentum term scaled by the factor α in the LMS-based algorithm. Due to the presence of scaling factor with the various weights from preceding two iterations, it is certainly convergent more rapidly. Moreover, it has promised better reliability in reckless atmosphere. This control is verified by computer simulations. The entire system is developed in MATLAB/SIMULINK environment followed by experimental validation of control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SEIG:

Self-excited induction generator

MLMS:

Momentum least mean square

VSC:

Voltage source converter

BESS:

Battery energy storage system

DSTATCOM:

Distribution static compensator

i b :

Battery current

V w :

Wind velocity

v t :

Terminal voltage magnitude

v p :

In-phase voltage component

v q :

Quadrature phase voltage component

u pa :

In-phase unit voltage template

u qa :

Quadrature phase unit voltage template

v b :

Battery terminal voltage

f :

System frequency

i spt :

Magnitude of active component of reference current

i sqt :

Magnitude of reactive component of reference current

w(p):

Sample of current weight at pth moment

i dp :

Current loss component in compensator

i qq :

Reactive current component from source

i * spt :

Active component of reference current

i * sqt :

Reactive component of reference current

i s :

Source current

i * s :

Reference source current

α :

Momentum scaling factor

μ :

Learning rate

ω :

Angular frequency

e(p):

Current weight error

P G, P C, P B, P D :

Real power of generation, compensator, battery and demand, respectively

V dc :

DC link voltage

C dc :

DC link capacitor

C exc :

Excitation capacitor

References

  1. El-Sharkawi MA (2015) Wind energy an introduction, 1st edn. CRC Press, Cambridge

    Book  Google Scholar 

  2. Boldea I (2016) Synchronous generators hand book. CRC Press, Cambridge

    Google Scholar 

  3. Lai LL, Chan TF (2007) Distributed generation: induction and permanent magnet generators. Wiley, New York

    Book  Google Scholar 

  4. Chapallaz JM, Ghali JD, Eichenberger P, Fischer G (1992) Manual on induction motors used as generators. Springer, Berlin

    Book  Google Scholar 

  5. Widrow B, Steams SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. IEEE Standards 519–2014. IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems.

  7. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  8. Zobaa AF (2014) Optimal multi-objective design of hybrid active power filters considering a distorted environment. IEEE Trans Ind Electron 61(1):107–114

    Article  Google Scholar 

  9. Barrado I, Grino R, Blavi H (2010) Power quality improvement of a standalone induction generator using a STATCOM with battery energy storage system. IEEE Trans Power Deliv 25(4):2734–2741

    Article  Google Scholar 

  10. Singh B, Arya SR (2013) Adaptive theory based improved linear sinusoidal tracer control algorithm for DSTATCOM. IEEE Trans Power Electron 28(8):3768–3778

    Article  Google Scholar 

  11. Yang K, Bollen MHJ, Amaris H, Alvarez C (2016) Decompositions of harmonic propagation in wind power plant. J Electric Power Syst Res 141(5):84–90

    Article  Google Scholar 

  12. Loetwassana W, Punchalard R, Koseeyaporn J, Wardkein P (2006) A Modification of Momentum LMS with variable momentum factor. In: Proceedings of international symposium on communications and information technologies, pp 11–14

  13. Chauhan PJ, Chatterjee JK, Bhere H, Perumal BV, Sarkar D (2015) Synchronized Operation of DSP-based generalized impedance controller with variable-speed isolated SEIG for Novel Voltage and Frequency Control. IEEE Trans Ind Appl 51(2):1845–1854

    Article  Google Scholar 

  14. Tugay MA, Tanik Y (1989) Properties of the momentum LMS algorithm. In: Proceedings of MELCON-89, Protugal, pp 197–200

  15. Giri AK, Qureshi A, Arya SR, Maurya R, Chitti Babu B (2018) Features of Power quality in single-phase distributed power generation using adaptive nature vectorial filter. IEEE Trans Power Electron 33(11):9482–9495

    Article  Google Scholar 

  16. Glover JR (1979) High order algorithms for adaptive filters. IEEE Transaction on Communications 27:216–221

    Article  Google Scholar 

  17. Tanrikutu O, Chambers JA, Constantinides AG (1997) Block Momentum LMS algorithm based on the method of parallel tangents. IEE Proc Vis Image Signal Process 144(2):49–56

    Article  Google Scholar 

  18. Shynk JJ, Roy S (1988) The LMS algorithm with momentum updating. In: Proceedings of IEEE international symposium on circuits and system, Helsinki-Finland, vo1 3, pp 2651–2654

  19. Giri AK, Arya SR, Maurya R, Mehar R (2018) Variable learning adaptive gradient based control algorithm for voltage source converter in distributed generation. IET Renew Power Gener 12(16):1883–1892

    Article  Google Scholar 

  20. Tugay MA, Tanik Y (1989) Properties of the momentum LMS algorithm. In: Proceedings of electro-technical conference on integrating research, industry and education in energy and communication engineering (MELECON), Mediterranean, pp 1–4

  21. Roy S, Shynk JJ (1990) Analysis of the momentum LMS algorithm. IEEE Trans Acoust Speech Signal Process 38(2):2088–2098

    Article  Google Scholar 

  22. Kim SH, Jeong JJ, Koo G, Kim SW (2016) Robust convex combination of affine projection-type algorithms using an impulsive noise indicator. J Signal Process 129(5):33–37

    Article  Google Scholar 

  23. Das RL, Narwaria M (2017) Lorentzian based adaptive filters for impulsive noise environments. IEEE Trans Circuits Syst-I 64(6):1529–1539

    Article  Google Scholar 

  24. Singh B, Rajagopal V (2011) Neural-network-based integrated electronic load controller for isolated asynchronous generators in small hydro generation. IEEE Trans Ind Electron 58(9):4264–4274

    Article  Google Scholar 

  25. Giri AK, Arya SR, Maurya R, Chittibabu B (2020) Control of VSC for enhancement of power quality in off-grid distributed power generation. IET Renew Power Gener 14(5):771–778

    Article  Google Scholar 

  26. Kalla UK, Singh B, Sreenivasa Murthy S, Jain C, Kant K (2018) Adaptive Sliding mode control of standalone single-phase micro-grid using hydro, wind, and solar PV array-based generation. IEEE Trans Smart Grid 9(6):6806–6814

    Article  Google Scholar 

  27. Nayanar V, Kumaresan N, Ammasai Gounden N (2016) A Single sensor based MPPT controller for wind-driven induction generators supplying DC Micro-grid. IEEE Trans Power Electron 31(2):1161–1172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabha Raj Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Parameters of SEIG

Parameters: Rms = 2.93 Ω, Lms = 0.0267544 H, Rmr = 3.3077 Ω, Lmr = 0.017544 H, Lms = 0.13814 H, J = 0.00290763 J(Kg m2), Las = 0.024007 H; Ras = 5.0268 Ω, Pole pair = 2, Na/Nm = 1.25; Cexc = 80 µF, Auxiliary load: 240 V, 100 Ω, 500 Watt.

1.2 Parameters of supply, DSTATCOM, loads and control logic

System/components/instruments

Rating/parameter

Values

Generator (SEIG) data

Voltage rating

220 V

Power rating

2.2 kW

No. of poles

04

Frequency

50 Hz

High-frequency ripple filter

Resistance (Rf)

8 Ω

Capacitor (Cf)

12 µF

Load parameters

Active power (P)

2.5 kW

Reactive power (Q)

2.5 kVAR

PI controller gains

In frequency loop

kp = 0.22, ki = 0.042

In terminal voltage control loop

kp = 0.54, ki = 0.23

VSC data

DC bus voltage (Vdc)

400 V

Interfacing inductor (Ls)

4 mH

DC bus capacitor (Cdc)

8000 µF

Battery energy storage system

Voltage

400 V

Ampere hour capacity

7.5 Ah

Internal resistance

0.05 Ω

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, A., Giri, A.K., Arya, S.R. et al. Power conditioning using DSTATCOM in a single-phase SEIG-based isolated system. Electr Eng 104, 111–127 (2022). https://doi.org/10.1007/s00202-021-01423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01423-1

Keywords

Navigation