Skip to main content

Advertisement

Log in

Hybrid tools of generating unit simulation for proper tuning of automatic voltage regulators: concept, development and validation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The penetration of renewable-based converter-interfaced generation and flexible alternating current transmission systems significantly changes properties and dynamic characteristics of modern electric power systems, which leads to the need to take measures to ensure security of their operation. These measures may consist in using the capabilities of new penetrated units or in adapting conventional means. Such adaptation consists in reconfiguration of control systems, development of new systems or approaches to settings determination, which include tuning of automatic voltage regulators with power system stabilizers of conventional synchronous generation. This paper proposes a new approach to tuning of automatic voltage regulators, based on the use of the most complete and reliable information about processes in modern power systems. This approach allows to get settings that are most adequate to practical conditions of operation as part of power systems. For this purpose, the hybrid real-time power system simulator and concept of hybrid modeling are used, and within this paper, and the hybrid modeling tools necessary for the tuning process have been developed. The result of the study is a comprehensive assessment of the reliability of the simulation results obtained using the developed tools, which allows to conclude about the possibility of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACS :

Automatic control system

ADC :

Analog-to-digital converters

AVR :

Automatic voltage regulator

CIG :

Converter-interfaced generation

CPU :

Central processing unit

DAC :

Digital-analog converter

EMT :

Electromagnetic transient

EPS :

Electric power system

FACTS :

Flexible alternating current transmission system

HCPAL :

Hybrid co-processor of auxiliary load

HCPES :

Hybrid co-processor of excitation system

HCPMM :

Hybrid co-processor of multi-mass shaft model

HCPPT :

Hybrid co-processor of power transformer

HCPSG :

Hybrid co-processor of synchronous generator

HRTSim :

Hybrid real-time power system simulator

MPU :

Microprocessor unit

NMEE :

Normalized maximum estimation error

NMSE :

Normalized mean squared error

PADC :

Processor of analog-to-digital conversion

PDQ :

Processor of dq transformation

PMB :

Physical model of breakers

PMFS :

Physical model of fault switches

PPCSP :

Peripheral processor of control systems and protection,

PSS :

Power system stabilizer

RTDS :

Real-time digital simulator

SP :

Specialized processor

SwPB :

Switching processor of breakers

SwPFS :

Switching processor of fault switches

SwPTC :

Switching processor of thyristor-based converters

VCC :

Voltage-to-current converter

VF :

Voltage follower

References

  1. Adetokun BB, Muriithi CM (2021) Application and control of flexible alternating current transmission system devices for voltage stability enhancement of renewable-integrated power grid: a comprehensive review. Heliyon 7(3):e06461. https://doi.org/10.1016/j.heliyon.2021.e06461

    Article  Google Scholar 

  2. Karami A, Mahmoodi Galougahi K (2019) Improvement in power system transient stability by using STATCOM and neural networks. Electr Eng 101(1):19–33. https://doi.org/10.1007/s00202-019-00753-5

    Article  Google Scholar 

  3. Paolone M, Gaunt T, Guillaud X, Liserre M, Meliopoulos S, Monti A, Van Cutsem T, Vittal V, Vournas C (2020) Fundamentals of power systems modelling in the presence of converter-interfaced generation. Electr Power Syst Res 189:106811. https://doi.org/10.1016/j.epsr.2020.106811

    Article  Google Scholar 

  4. Lowe RJ, Chiu LF, Pye S, Cassarino TG, Scamman D, Solano-Rodriguez B (2021) Lost generation: reflections on resilience and flexibility from an energy system architecture perspective. Appl Energy 298:117179. https://doi.org/10.1016/j.apenergy.2021.117179

    Article  Google Scholar 

  5. Liu H, Xie X, He J, Xu T, You Z, Wang C, Zhang C (2017) Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks. IEEE Trans Power Syst 32(6):4708–4720. https://doi.org/10.1109/TPWRS.2017.2682197

    Article  Google Scholar 

  6. Tan B, Zhao J, Netto M, Krishnan V, Terzija V, Zhang Y (2022) Power system inertia estimation: review of methods and the impacts of converter-interfaced generations. Int J Electr Power Energy Syst 134:107362. https://doi.org/10.1016/j.ijepes.2021.107362

    Article  Google Scholar 

  7. Uehara A, Pratap A, Goya T, Senjyu T, Yona A, Urasaki N, Funabashi T (2011) A coordinated control method to smooth wind power fluctuations of a PMSG-Based WECS. IEEE Trans Energy Convers 26(2):550–558. https://doi.org/10.1109/TEC.2011.2107912

    Article  Google Scholar 

  8. Sayahi K, Kadri A, Bacha F, Marzougui H (2020) Implementation of a D-STATCOM control strategy based on direct power control method for grid connected wind turbine. Int J Electr Power Energy Syst 121:106105. https://doi.org/10.1016/j.ijepes.2020.106105

    Article  Google Scholar 

  9. Nasrazadani H, Sedighi A, Seifi H (2021) Enhancing long-term voltage stability of a power system integrated with large-scale photovoltaic plants using a battery energy storage control scheme. Int J Electr Power Energy Syst 131:107059. https://doi.org/10.1016/j.ijepes.2021.107059

    Article  Google Scholar 

  10. Ullah K, Basit A, Ullah Z, Aslam S, Herodotou H (2021) Automatic generation control strategies in conventional and modern power systems: a comprehensive overview. Energies 14(9):2376. https://doi.org/10.3390/en14092376

    Article  Google Scholar 

  11. Ayas MS (2019) Design of an optimized fractional high-order differential feedback controller for an AVR system. Electr Eng 101(4):1221–1233. https://doi.org/10.1007/s00202-019-00842-5

    Article  Google Scholar 

  12. Denholm P, Arent DJ, Baldwin SF, Bilello DE, Brinkman GL, Cochran JM, Cole WJ, Frew B, Gevorgian V, Heeter J, Hodge BMS, Kroposki B (2021) The challenges of achieving a 100% renewable electricity system in the United States. Joule 5(6):1331–1352. https://doi.org/10.1016/j.joule.2021.03.028

    Article  Google Scholar 

  13. Rezkalla M, Pertl M, Marinelli M (2018) Electric power system inertia: requirements, challenges and solutions. Electr Eng 100(4):2677–2693. https://doi.org/10.1007/s00202-018-0739-z

    Article  Google Scholar 

  14. Elliott RT, Arabshahi P, Kirschen DS (2020) A generalized PSS architecture for balancing transient and small-signal response. IEEE Trans Power Syst 35(2):1446–1456. https://doi.org/10.1109/TPWRS.2019.2938205

    Article  Google Scholar 

  15. Prakash T, Singh VP, Mohanty SR (2019) A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays. Int J Electr Power Energy Syst 105:131–141. https://doi.org/10.1016/j.ijepes.2018.08.014

    Article  Google Scholar 

  16. Obaid ZA, Muhssin MT, Cipcigan LM (2020) A model reference-based adaptive PSS4B stabilizer for the multi-machines power system. Electr Eng 102(1):349–358. https://doi.org/10.1007/s00202-019-00879-6

    Article  Google Scholar 

  17. Kahouli O, Jebali M, Alshammari B, Abdallah HH (2019) PSS design for damping low-frequency oscillations in a multi-machine power system with penetration of renewable power generations. IET Renew Power Gener 13(1):116–127. https://doi.org/10.1049/iet-rpg.2018.5204

    Article  Google Scholar 

  18. Kumar A (2020) Nonlinear AVR for power system stabilisers robust phase compensation design. IET Gener Transm Distrib 14(21):4927–4935. https://doi.org/10.1049/iet-gtd.2020.0092

    Article  Google Scholar 

  19. Butti D, Mangipudi SK, Rayapudi S (2021) Model order reduction based power system stabilizer design using improved whale optimization algorithm. IETE J Res. https://doi.org/10.1080/03772063.2021.1886875

    Article  Google Scholar 

  20. Verdejo H, Pino V, Kliemann W, Becker C, Delpiano J (2020) Implementation of particle swarm optimization (PSO) algorithm for tuning of power system stabilizers in multimachine electric power systems. Energies 13(8):2093. https://doi.org/10.3390/en13082093

    Article  Google Scholar 

  21. Baadji B, Bentarzi H, Bakdi A (2020) Comprehensive learning bat algorithm for optimal coordinated tuning of power system stabilizers and static VAR compensator in power systems. Eng Optimiz 52(10):1761–1779. https://doi.org/10.1080/0305215X.2019.1677635

    Article  Google Scholar 

  22. Kang RD, Martinez EA, Viveros EC (2021) Coordinated tuning of power system controllers using parallel genetic algorithms. Electr Power Syst Res 190:106628. https://doi.org/10.1016/j.epsr.2020.106628

    Article  Google Scholar 

  23. Pourbeik P, Sanchez-Gasca JJ, Senthil J, Weber JD, Zadehkhost PS, Kazachkov Y, Tacke S, Wen J, Ellis A (2017) Generic dynamic models for modeling wind power plants and other renewable technologies in large-scale power system studies. IEEE Trans Energy Convers 32(3):1108–1116. https://doi.org/10.1109/TEC.2016.2639050

    Article  Google Scholar 

  24. Chakraborty S, Ramanujam R (2018) New Numerical integration methods for simulation of electromagnetic transients. Int J Emerg Electr Power Syst 19(4):20180122. https://doi.org/10.1515/ijeeps-2018-0122

    Article  Google Scholar 

  25. Andreev MV, Gusev AS, Ruban NYu, Suvorov AA, Ufa RA, Askarov AB, Bems J, Kralik T (2019) Hybrid real-time simulator of large-scale power systems. IEEE Trans Power Syst 34(2):1404–1415. https://doi.org/10.1109/TPWRS.2018.2876668

    Article  Google Scholar 

  26. Ruban N, Suvorov A, Andreev M, Ufa R, Askarov A, Gusev A, Bhalja BR (2021) Software and hardware decision support system for operators of electrical power systems. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2021.3063511

    Article  Google Scholar 

  27. Ufa R, Andreev M, Ruban N, Suvorov A, Gusev A, Razzhivin I, Askarov A, Bay Y, Kievets A, Lozinova N, Suslova O (2019) The hybrid model of VSC HVDC. Electr Eng 101(1):11–18. https://doi.org/10.1007/s00202-018-00752-y

    Article  Google Scholar 

  28. Razzhivin I, Suvorov A, Kievets A, Askarov A (2019) Hybrid mathematical model of wind turbine for assessment of wind generation impact on transients in power systems. Electroteh Electron Autom 67(4):28–34

    Google Scholar 

  29. IEEE Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Analyses, IEEE Std, 1110 (2019). https://doi.org/10.1109/IEEESTD.2020.9020274

  30. Dehkordi AB, Neti P, Gole AM, Maguire TL (2010) Development and validation of a comprehensive synchronous machine model for a real-time environment. IEEE Trans Energy Convers 25(1):34–48. https://doi.org/10.1109/TEC.2009.2038530

    Article  Google Scholar 

  31. Suvorov A, Gusev A, Ruban N, Andreev M, Askarov A, Ufa R, Razzhivin I, Kievets A, Bay J (2019) Potential application of HRTSim for comprehensive simulation of large-scale power systems with distributed generation. Int J Emerg Electr Power Syst 20(5):20190075. https://doi.org/10.1515/ijeeps-2019-0075

    Article  Google Scholar 

  32. Machlev R, Batushansky Z, Soni S, Chadliev V, Belikov J, Levron Y (2020) Verification of utility-scale solar photovoltaic plant models for dynamic studies of transmission networks. Energies 13(12):en13123191. https://doi.org/10.3390/en13123191

    Article  Google Scholar 

  33. Sareen K, Bhalja BR, Srivastava S, Swarnkar Y, Maheshwari RP (2018) Islanding detection technique based on Karl Pearson’s coefficient of correlation for distribution network with high penetration of distributed generations. Int J Emerg Electr Power Syst 19(3):20170232. https://doi.org/10.1515/ijeeps-2017-0232

    Article  Google Scholar 

  34. Wildi T (2005) Electrical machines, drives, and power systems. Prentice Hall, Columbus

    MATH  Google Scholar 

  35. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Std, 421.5 (2016). https://doi.org/10.1109/IEEESTD.2016.7553421

  36. Kundur P (1993) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  37. Task force on Turbine-governor modeling, Dynamic Models for Turbine-Governors in Power System Studies, IEEE (2013). https://resourcecenter.ieee-pes.org/publications/technical-reports/PESTR1.html

Download references

Acknowledgements

The reported study was funded by RFBR, project number 20-38-90003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisher Askarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askarov, A., Andreev, M., Gusev, A. et al. Hybrid tools of generating unit simulation for proper tuning of automatic voltage regulators: concept, development and validation. Electr Eng 104, 1591–1606 (2022). https://doi.org/10.1007/s00202-021-01419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01419-x

Keywords

Navigation