Skip to main content

Advertisement

Log in

Wireless fundamental frequency-based variable mode power sharing strategy for autonomous microgrid

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a variable mode control (VMC) for the power mismatch among inverters in autonomous microgrid. With this method, power mismatch, usually difficult to sense in traditional droop control, can be tackled easily by varying the control mode of inverters synchronously in a wireless manner without central controller. In order to synchronously vary the control mode in a wireless manner, this paper first analyses the phase relationship between inverter output voltage and power point coupling voltage to demonstrate the feasibility of adopting inverter output voltage as the quasi-synchronous signal for mode varying. This results in the wireless VMC of fundamental frequency, which greatly reduces the control complexity by removing the central control signals. Based on this strategy, this paper shows that many typical methods for power sharing, such as virtual impedance, voltage compensation, variable droop coefficient and coupling control, can be used for accurate power sharing in a VMC manner without central controller. Moreover, the VMC is based on the output voltage regulation rather than impedance match principle. Furthermore, power fluctuations and small signal models are analysed for parameter selection. Finally, simulations using MATLAB/Simulink and experiments are carried out to evaluate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rocabert J, Luna A, Blaabjerg F et al (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749

    Article  Google Scholar 

  2. Zhong Q-C, Blaabjerg F, Cecati C (2017) Power-electronics-enabled autonomous power systems. IEEE Trans Power Electron 64(7):5907–5918

    Google Scholar 

  3. Marwali MN, Jung J-W, Keyhani A (2004) Control of distributed generation systems-Part II: load sharing control. IEEE Trans Power Electron 19(6):1551–1561

    Article  Google Scholar 

  4. Brabandere KD, Bolsens B, Keybus JVD et al (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  5. Tuladhar A, Jin H, Unger T et al (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36(1):131–138

    Article  Google Scholar 

  6. Li Y, Li YW (2011) Powermanagement of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame. IEEE Trans Smart Grid 2(1):30–40

    Article  Google Scholar 

  7. Guerrero JM, Vicuna LG, Matas J et al (2005) Output impedance design of parallel-connected UPS inverters with wireless load sharing control. IEEE Trans Ind Electron 52(4):1126–1135

    Article  Google Scholar 

  8. Li YW, Kao C-N (2009) An accurate power control strategy for powerelectronics- interfaced distributed generation units operation in a low voltage multibus microgrid. IEEE Trans Power Electron 24(12):2977–2988

    Article  Google Scholar 

  9. He J, Li YW (2011) Analysis, design and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans Ind Appl 47(6):2525–2538

    Article  Google Scholar 

  10. Zhong Q-C (2013) Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans Ind Electron 60(4):1281–1290

    Article  Google Scholar 

  11. He J, Li YW, Blaabjerg F (2015) An enhanced islanding microgridreactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans Power Electron 30(6):3389–3401

    Article  Google Scholar 

  12. He J, Li YW, Guerrero JM et al (2013) An island-ing microgrid power sharing approach using enhanced virtual impedancecontrol scheme. IEEE Trans Power Electron 28(11):5272–5282

    Article  Google Scholar 

  13. He J, Li YW (2013) An enhanced microgird load demand sharing strategy. IEEE Trans Power Electron 27(9):3984–3995

    Article  Google Scholar 

  14. Zhong Q-C, Zeng Y (2016) Universal droop control of inverters with different types of output impedance. IEEE Access 4:702–712

    Article  Google Scholar 

  15. Mohamed Y, Saadany E (2008) Adaptive decentralized droop controller to preserve power sharing stability of parallel inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816

    Article  Google Scholar 

  16. Lee C-T, Chu C-C, Cheng P-T (2013) A new droop control method for the autonomous operation of distributed energy resource interface converters. IEEE Trans Power Electron 28(4):1980–1993

    Article  Google Scholar 

  17. Coelho EAA, Cortizo PC, Garcia PFD (2002) Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans Ind Appl 38(2):533–542

    Article  Google Scholar 

  18. Coelho EAA, Cortizo PC, Garcia PFD (1999) Small signal stability for single phase inverter connected to stiff ac system. In: Conference record of the 1999 IEEE industry applications conference. Thirty-forth IAS annual meeting (Cat. No. 99CH36370), pp 2180–2187

  19. Han Y, Li H, Shen P et al (2017) Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans Power Electron 32(3):2427–2451

    Article  Google Scholar 

  20. Han Y, Shen P, Zhao X et al (2016) An enhanced power sharing scheme for voltage unbalance and harmonics compensation in an islanded AC microgrid. IEEE Trans Energy Convers 31(3):1037–1050

    Article  Google Scholar 

  21. Pan R, Sun P (2019) Microgrid power sharing using variable droop coefficient control. In: Proceedings of 10th IEEE international symposium on power electronics for distributed generation systems (PEDG), pp 659–664

  22. Han H, Hou X et al (2015) Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans Smart Grid 7(1):200–215

    Article  Google Scholar 

  23. Loh PC, Li D et al (2013) Autonomous operation of hybrid microgrid with AC and DC subgrids. IEEE Trans Power Electron 28(5):2214–2223

    Article  Google Scholar 

  24. Pan R, Sun P (2019) Extra transient block for virtual synchronous machine with better performance. IET Gener Transm Distrib 14(7):1186–1196

    Article  Google Scholar 

  25. DArco S, Suul JA, Fosso OB (2015) A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electric Power Syst Res 122:180–197

    Article  Google Scholar 

  26. Liu S, Wang W et al (2015) Impact of communication delays on secondary frequency control in an Islanded microgrid. IEEE Trans Ind Electron 62(4):2021–2031

    Article  Google Scholar 

  27. Pan R, Sun P (2021) Multifunctional inverter based on virtual synchronous machine implemented in synchronous reference frame. Electr Eng 103(4):2093–2111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Sun, P. Wireless fundamental frequency-based variable mode power sharing strategy for autonomous microgrid. Electr Eng 104, 1473–1486 (2022). https://doi.org/10.1007/s00202-021-01413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01413-3

Keywords

Navigation