Skip to main content
Log in

Experimental investigation on dielectric/electric properties of aged polymeric insulator: correlation of permittivity and dielectric loss tangent with surface hydrophobicity

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Silicone rubber (SiR) insulators are widely used in transmission and distribution electrical power systems. Dielectrics properties give an important efficiency to SiR insulators that can be lost after ageing. The aim of this study is to investigate the effect of temperature, immersion and ultraviolet (UV) radiation on the ageing phenomenon of SiR insulator samples. The evolution of bulk condition of the samples after the ageing cycle was diagnosed by broadband dielectric spectroscopy measurement, a correlation between dielectric properties and the surface hydrophobicity of the samples has been discussed. DC surface resistivity was measured after ageing. A comparison was made between the characteristics of the samples in the new state and the aged one. Experimental results show that the low frequency dispersion dominates the dielectric response of the studied material. The thermal ageing causes a decrease of the dielectric loss tangent (DLT) in the low frequencies which improves the FOV of the aged samples. UV radiation can cause a change in the physicochemical structure of the samples, not only at the surface but also at the bulk level. The immersion ageing results in an increase in the DLT, especially for low conductivity solutions. The water can diffuse inside the samples during the immersion. In fact, a limited amount of water can still reside inside the samples even after a long period of drying. There is a good agreement between the surface hydrophobicity and the dielectric properties of the samples, the link with these properties is dependent to the ageing stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Papailiou KO, Schmuck F (2013) Silicone composite insulators: materials, design, applications. Springer, Berlin

    Book  Google Scholar 

  2. Hamour K et al (2019) Contribution to the optimization of the electrical performance of a superhydrophobic insulation covered with water drops under DC voltage. J Electrostat 102:103375

    Article  Google Scholar 

  3. Venkatesulu B, Joy Thomas M (2011) Long-term accelerated weathering of outdoor silicone rubber insulators. IEEE Trans Dielectr Electr Insul 18(2):418–424

    Article  Google Scholar 

  4. Bashir N, Ahmad H (2008) Ageing of transmission line insulators: the past, present and future. In: PECon 2008—2008 IEEE 2nd international power energy conference, no PECon 08, pp 30–34

  5. Wang X, Liang X, Zhou Y (2004) Aging effect of UV radiation on SIR insulators’ hydrophobicity property. In: Annual report—conference on electrical insulation and dielectric phenomena, CEIDP, pp 241–244

  6. Youn BH, Huh CS (2005) Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition. IEEE Trans Dielectr Electr Insul 12(5):1015–1024

    Article  Google Scholar 

  7. Farhadinejad Z, Ehsani M, Ahmadi-Joneidi I, Shayegani A, Mohseni H (2012) Effects of UVC radiation on thermal, electrical and morphological behavior of silicone rubber insulators. IEEE Trans Dielectr Electr Insul 19(5):1740–1749

    Article  Google Scholar 

  8. Wang Z, Jia ZD, Fang MH, Guan ZC (2015) Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 22(6):3357–3365

    Article  Google Scholar 

  9. Ali M, Hackam R (2008) Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Trans Dielectr Electr Insul 15(5):1368–1378

    Article  Google Scholar 

  10. Hanada S, Miyamoto M, Hirai N, Yang L, Ohki Y (2017) Experimental investigation of the degradation mechanism of silicone rubber exposed to heat and gamma rays. High Volt 2(2):92–101

    Article  Google Scholar 

  11. Yuan C, Xie C, Li L, Xu X, Gubanski SM, He Z (2016) Dielectric response characterization of in-service aged sheds of (U) HVDC silicone rubber composite insulators. IEEE Trans Dielectr Electr Insul 23(3):1418–1426

    Article  Google Scholar 

  12. N. A. Pérez, A. Sylvestre, J. L. Augé, M. T. Do, and S. Rowe (2006) Dielectric spectroscopy in silicone rubber incorporating nanofillers. In: Annual report—conference on electrical insulation and dielectric phenomena, CEIDP, pp 453–456

  13. Abed ME-A, Hadi H, Belarbi AW, Slama ME-A (2020) Experimental characterization of electric power insulator subjected to an accelerated environmental ageing. Elektroteh Vestn 87(4):183–192

    Google Scholar 

  14. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  15. IEC 60093:1980 (1980) Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials. IEC, Geneva, Switzerland

    Google Scholar 

  16. IEC TS 62073:2003 (2003) Guidance on the measurement of wettability of insulator surfaces

  17. Dubois J (1998) Propriétés diélectriques des polymères. Tech l’Ingénieur E1850

  18. Kahouli A (2016) Spectroscopie diélectrique appliquée aux polymères. Tech l’Ingénieur D2308

  19. Robert P (1979) Matériaux de l’électrotechnique, traité d’électricité volume II. Georgi

  20. Psarras GC, Manolakaki E, Tsangaris GM (2002) Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Compos Part A Appl Sci Manuf 33(3):375–384

    Article  Google Scholar 

  21. Neagu E, Pissis P, Apekis L (2000) Electrical conductivity effects in polyethylene terephthalate films. J Appl Phys 87(6):2914–2922

    Article  Google Scholar 

  22. Abdul AB, North AM, Kossmehl G (1977) Charge carrier hopping in poly(arylene vinylenes). Eur Polym J 13(10):799–803

    Article  Google Scholar 

  23. Ohki Y (2015) Dielectric relaxation phenomena of several insulating polymers analyzed by electric modulus spectra. In: Proceedings of the IEEE international conference on properties and applications of dielectric materials, pp 192–195

  24. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33(8):2027–2037

    Article  Google Scholar 

  25. Saji J, Khare A, Choudhary RNP, Mahapatra SP (2015) Impedance analysis, dielectric relaxation, and electrical conductivity of multi-walled carbon nanotube-reinforced silicon elastomer nanocomposites. J Elastomers Plast 47(5):394–415

    Article  Google Scholar 

  26. Tian F, Ohki Y (2014) Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans Dielectr Electr Insul 21(3):929–931

    Article  Google Scholar 

  27. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32(14):R57

    Article  Google Scholar 

  28. Dissado L (2017) Springer handbook of electronic and photonic materials. Springer, Berlin, pp 219–245

    Google Scholar 

  29. Raju GG (2003) Dielectrics in electric fields. CRC Press, Cambridge

    Book  Google Scholar 

  30. Tuncer E (2001) Dielectric relaxation in dielectric mixtures. Chalmers University of Technology, Gothenburg

    Google Scholar 

  31. Tuncer E, Gubanski SM (2000) Electrical properties of filled silicone rubber. J Phys Condens Matter 12(8):1873–1897

    Article  Google Scholar 

  32. Segui Y (2000) Diélectriques: Courants de conduction. Tech l’ingénieur D2301:1–12

    Google Scholar 

  33. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. The Institution of Engineering and Technology, London

    Book  Google Scholar 

  34. Segui Y (1978) Contribution à l’étude des mécanismes de conduction dans les films minces de polymère. Application à la passivation des composants à semiconducteurs. Université Paul Sabatier de Toulouse

  35. Jiang T et al (2020) Impact of water permeation on the dielectric response of HTV silicone rubber. In: 7th IEEE international conference on high voltage engineering and application ICHVE 2020—proceedings, pp 6–9

  36. Ahmad Z (2012) Polymeric dielectric materials. IntechOpen, London

    Google Scholar 

  37. Nezari O (2018) Vieillissement d’un isolant composite sous l’effet de la température et la décharge électrique. Université des Sciences et Technologies d’Oran Mohamed Boudiaf (USTO-MB)

  38. Dissado LA, Hill RM (1984) Anomalous low-frequency dispersion. near direct current conductivity in disordered low-dimensional materials. J Chem Soc Faraday Trans 2 Mol Chem Phys 80(3):291–319

    Google Scholar 

  39. Dai J, Yao X, Yeh HY, Liang X (2006) Moisture absorption of filled silicone rubber under electrolyte. J Appl Polym Sci 99(5):2253–2257

    Article  Google Scholar 

  40. Sivoukhine S (1983) Cours de physique générale, Tome 3, Electricité. Edition Mir Moscou

  41. Kochetov R et al (2016) Effect of water absorption on dielectric spectrum of nanocomposites. In: 34th electrical insulation conference EIC 2016, pp 579–582

  42. Fournié R (1990) Les isolants en électrotechnique: essais, mécanismes de dégradation, applications industrielles, Collection de la direction des études et recherches d’électricité de France (EDF) no 73. Eyrolles

  43. Yoshimura N, Kumagai S, Nishimura S (1999) Electrical and environmental aging of silicone rubber used in outdoor insulation. IEEE Trans Dielectr Electr Insul 6(5):632–650

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Head of Maintenance Department of SONELGAZ GRTE/Oran (Algerian Electricity Company) Mr. Zerouali for supplying silicone rubber material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El Amine Abed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, M.E., Hadi, H., Slama, M.E. et al. Experimental investigation on dielectric/electric properties of aged polymeric insulator: correlation of permittivity and dielectric loss tangent with surface hydrophobicity. Electr Eng 104, 1539–1552 (2022). https://doi.org/10.1007/s00202-021-01405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01405-3

Keywords

Navigation