Skip to main content
Log in

A general approach to sensorless estimation rotor and stator windings temperature in induction motor drives

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Temperature monitoring is a major issue in induction motor drives, because temperature variations under working conditions may affect the machine lifetime and the control performance as well. The paper presents a technique for on-line monitoring the rotor and stator temperature on field-oriented induction motor drives, based on a new approach to estimate the rotor and stator winding resistances. The proposed approach exploits the injection of small additional current signals to extract the thermal status of the electrical machine, without affecting the normal drive operation. Moreover, it features a low computational effort, does not require other transducers than these already present in a standard field-oriented controlled drive and can be applied on both conventional and sensorless induction motor drives. The stator and rotor temperature estimation can be used either to prevent dangerous overheating and for on-line tuning of the control system. The practical effectiveness of the proposed approach is demonstrated by simulations and experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

ˆ:

Estimated quantity

*:

Reference quantity

R r :

RS, Rotor and stator resistances

R ra :

RSa, Actual rotor and stator resistances

L r :

LS, Rotor and stator inductances

τ r :

Rotor time constant

τ ra :

Actual rotor time constant

τ r :

Rotor time constant

L m :

Magnetizing inductance

i qdr :

Qd axes components of rotor current

i qds :

Qd axes components of stator current

λ qdr :

Qd axes components of rotor flux

λ qds :

Qd axes components of stator flux

Λ r :

Total rotor flux

ω sl :

Slip angular frequency

ω rm :

Mechanical rotor speed

ω r :

Rotor electrical angular speed

ω λr :

Rotor flux angular speed

θ λr :

Rotor flux angular position

θ r :

Rotor electrical angular position

θ sl :

Slip electrical angular position

ε :

Rotor flux angular position error

α :

Stator current angular position

Δ q :

Injection q-axis current ripple

Δ d :

Injection d-axis current ripple

M :

Amplitude of q-axis current ripple

ω h :

Injected angular speed

T e :

Electromagnetic torque

ΔT e :

Ripple on electromagnetic torque

T L :

Load torque

J :

Rotor inertia

F :

Friction constant

s :

Laplace operator

P :

Pole pairs

p :

Time derivative operator

Δω r :

Ripple on rotor electrical angular speed

Δω 1 :

Injected ripple on slip electrical angular speed

References

  1. Han C (2011) Lifetime evaluation of class E electrical insulation for small induction motors. IEEE Electr Insul Mag 27(3):14–19

    Article  Google Scholar 

  2. Husach S, Yatsiuk R, Mamchur D (2019) Induction motors condition monitoring and lifetime estimation system. In: 2019 IEEE international conference on modern electrical and energy systems (MEES), Kremenchuk, Ukraine, pp 34–37

  3. Ugalde G, Poza J, Almandoz G, Gonzalez A (2009) Flux weakening of surface permanent-magnet machines in over-torque operation mode. In: 2009 8th international symposium on advanced electromechanical motion systems & electric drives joint symposium, Lille, pp 1–5

  4. Ganchev M, Kubicek B, Kappeler H (2010) Rotor temperature monitoring system. In: The XIX international conference on electrical machines—ICEM 2010, Rome, pp 1–5

  5. Khan N, Rafiq F, Abedin F, Khan FU (2019) IoT based health monitoring system for electrical motors. In: 2019 15th international conference on emerging technologies (ICET), Peshawar, Pakistan, pp 1–6

  6. Tornello LD, Scelba G, Scarcella G, Cacciato M, Testa A, Foti S, De Caro S, Pulvirenti M (2019) Combined rotor-position estimation and temperature monitoring in sensorless, synchronous reluctance motor drives. IEEE Trans Ind Appl 55(4):3851–3862

    Article  Google Scholar 

  7. Lee S-B, Habetler TG, Harley RG, Gritter DJ (2002) An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring. IEEE Trans Energy Convers 17(1):7–15

    Article  Google Scholar 

  8. Nikbakhsh A, RezaIzadfar H, Jazaeri M (2019) Classification and comparison of rotor temperature estimation methods of squirrel cage induction motors, vol 145. Elsevier, Amsterdam

    Google Scholar 

  9. Huger D, Gerling D (2015) On the effects of high-temperature-induced aging on electrical machine windings. In: 2015 IEEE international electric machines & drives conference (IEMDC), Coeur d'Alene, ID, pp 1018–1021

  10. Lee S-B, Habetler TG, Harley RG, Gritter DJ (2002) An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring. IEEE Trans on Energy Convers 17(1):7–15

    Article  Google Scholar 

  11. Li H, Xuhui W, Guilan C (2002) A novel adaptive scheme for stator resistance estimation in sensorless induction motor drives. In: Processing of IEEE power engineering society winter meeting conference, vol 2

  12. Basak S, Ravi Teja AV, Chakraborty C, Hori Y (2013) A new model reference adaptive formulation to estimate stator resistance in field oriented induction motor drive. In: Proceesings IECON—39th annual conference of the IEEE industrial electronics society

  13. Jaalam N, Haidar AMA, Ramli NL, Ismail NL, Sulaiman ASM (2011) A neuro-fuzzy approach for stator resistance estimation of induction motor. In: Proceedings international conference on electrical, control and computer engineering 2011 (ECCE)

  14. Weili H, Xiang Z (2007) An evaluation of wavelet network-based stator estimation for induction motor temperature monitoring. In: Proceedings of 8th international conference on electronic measurement and instruments

  15. Zhong L, Rahman MF, Lim KW, Hu YW, Xu Y (1997) A fuzzy observer for induction motor stator resistance for application in direct torque control. In: Proceedings of second international conference on power electronics and drive systems

  16. Yildiz R, Barut M, Zerdali E, Inan R, Demir R (2017) Load torque and stator resistance estimations with unscented Kalman filter for speed-sensorless control of induction motors. In: Proceedings international aegean conference on electrical machines and power electronics (ACEMP)

  17. Dadkhah R, Givi H, Mehdipour A (2015) Parameter estimation of the induction motor using extended Kalman filter for wide range speed controls. In: Proceedings 6th power electronics, drive systems & technologies conference (PEDSTC)

  18. Ha J-I, Sul S-K (1999) Sensorless field-orientation control of an induction machine by high-frequency signal injection. IEEE Trans Ind Appl 35(1):426–432

    Google Scholar 

  19. Foti S, Testa A, De Caro S, Scimone T, Pulvirenti M (2019) Rotor flux position correction and parameters estimation on sensorless multiple induction motors drives. IEEE Trans Ind Appl 55(4):3759–3769

    Article  Google Scholar 

  20. Testa A, De Caro S, Foti S, Scimone T, Scelba G (2018) On-line rotor time constant estimation in IFOC induction motor drives. In: 2018 international symposium on power electronics, electrical drives, automation and motion (SPEEDAM), Amalfi, pp 944–949

  21. Scelba G et al (2018) Combined rotor position estimation and temperature monitoring in sensorless synchronous motor drives. In: 2018 IEEE 9th international symposium on sensorless control for electrical drives (SLED), Helsinki, pp 30–35

  22. Tornello LD, Scelba G, Scarcella G, Cacciato M, Foti S, Testa A (2019) Sensorless control of PMSM drives through modified thermistors wirings. In: 2019 IEEE 10th international symposium on sensorless control for electrical drives (SLED), Turin, Italy, 2019, pp 1–6

  23. De Caro S, Foti S, Scimone T, Testa A, Tornello LD, Scelba G (2019) A new self-commissioning technique for sensorless synchronous reluctance motor drives. In: 2019 IEEE 10th international symposium on sensorless control for electrical drives (SLED), Turin, Italy, 2019, pp 1–6

  24. Foti S, Testa A, De Caro S, Scelba G, Scarcella G (2020) Sensorless rotor and stator temperature estimation in induction motor drives. In: 2020 ELEKTRO, Taormina, Italy, pp 1–6

  25. Wang K, Lorenz RD, Baloch NA (2017) Improvement of back-EMF self-sensing for induction machines when using deadbeat-direct torque and flux control. IEEE Trans Ind Appl 53(5):4569–4578

    Article  Google Scholar 

  26. Ghartemani MK (2013) A unifying approach to single-phase synchronous reference frame PLLs. IEEE Trans Power Electron 28(10):4550–45562

    Article  Google Scholar 

  27. Consoli A, Scarcella G, Testa A (2000) A new zero-frequency flux-position detection approach for direct-field-oriented-control drives. IEEE Trans Ind Appl 36(3):797–804

    Article  Google Scholar 

  28. Sonnaillon MO, Bisheimer G, De Angelo C, García GO (2010) Online sensorless induction motor temperature monitoring. IEEE Trans Energy Convers 25(2):273–280

    Article  Google Scholar 

  29. Wu Y, Gao H (2006) Induction-motor stator and rotor winding temperature estimation using signal injection method. IEEE Trans Ind Appl 42(4):1038–1044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Foti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foti, S., Testa, A., De Caro, S. et al. A general approach to sensorless estimation rotor and stator windings temperature in induction motor drives. Electr Eng 104, 203–215 (2022). https://doi.org/10.1007/s00202-021-01373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01373-8

Keywords

Navigation