Skip to main content
Log in

Transient behaviour of grounding systems in multilayer soil under lightning strikes

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this article, transient behaviour of grounding systems buried in multilayer soil structure is analysed under the influence of lightning discharge. Vertical grounding rods, horizontal conductors and grounding grids are considered in the analysis. The computation of transient behaviour is performed in the frequency domain and obtained in time domain using inverse Fourier transform (IFT). The presented method is a hybrid approach based on PEEC technique that represents an equivalent circuit of grounding system buried in multilayer soil structure. Inductive, capacitive and conductive effects of grounding electrodes due to current leaking into the soil are also considered in the analysis. A procedure is adopted that simplifies the computation process of Sommerfeld method using small number of sample points over the grid. Also impulse impedance for horizontal grounding electrode, vertical rod and grounding grid is evaluated in two-layer soil structures. Simulated results are validated with the experimental and theoretical results reported in the literature and good agreements are found. Proposed method will help to improve the modelling of simple as well as complex grounding system buried in multilayer soil structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\({Y}_{GC}\) :

Admittance matrix accounting for conductive and capacitive coupling

\({Y}_{RL}\) :

Admittance matrix accounting internal impedance

\({\omega}\) :

Angular frequency

\( {{\phi}_{b}} \) :

Average branch potential

\( \sigma _{i} \) :

Electric conductivity of ith layer of soil

\({{h}_{1} }\) :

First layer soil depth

\({{\tilde{G }}_{vv}^{A}, {\tilde{G }}_{zz}^{A},{\tilde{G }}_{zu}^{A}} \) :

Green’s function in spectral domain

\({A}\) :

Incidence matrix of branch and node

\({I}_{bl}\) :

Leakage current of branch

\({I}_{nl}\) :

Leakage current of node

\({G}_{A}\) :

Magnetic vector potential

\({\phi }_{n}\) :

Nodal potential

\({G}_{\phi }\) :

Scalar electric potential

\({K}^{\phi }\) :

Scalar potential component

\({h}_{2}\) :

Second layer soil depth

\({\upmu }_{0}\) :

Vacuum permeability

\({\upvarepsilon }_{0}\) :

Vacuum permittivity

References

  1. Gua Z, Wu G, Chen S (2018) Transient behavior of common grounding grids to artificially triggered lightning. IEEE Trans Electromagn Compat 61(2):426–433

    Article  Google Scholar 

  2. Mazzetti C (2003) Principles of protection of structures against lightning. In: Cooray V (ed) The lightning flash. IEE, London, U.K., pp 503–548

    Chapter  Google Scholar 

  3. Sengar KP, Chandrasekaran K (2019) Designing of cost minimum substation grounding grid system using DE, SCA, and HDESCA techniques. IET Sci Meas Technol 13(9):1260–1267

    Article  Google Scholar 

  4. Sengar KP, Chandrasekaran K (2018) Effects of cost optimised grid configuration on earthing system performance: a comparative assessment. IET Sci Meas Technol 14(5):610–620

    Article  Google Scholar 

  5. Ramamoorty M, Narayanan BM, Parameswaran S, Mukhedkar D (1989) Transient performance of grounding grids. IEEE Trans Power Del 4(4):2053–2059

    Article  Google Scholar 

  6. Feng Z, Wen X, Tong X, Lu H, Lan L, Xing P (2015) Impulse characteristics of tower grounding devices considering soil ionization by the time-domain difference method. IEEE Trans Power Deliv 30(4):1906–1913

    Article  Google Scholar 

  7. Zhang B, He J, Lee JB, Cui X, Zhao Z, Zou J (2005) Numerical analysis of transient performance of grounding systems considering soil ionization by coupling moment method with circuit theory. IEEE Trans Magn 41(5):1440–1443

    Article  Google Scholar 

  8. Liu Y, Theethayi N, Thottappillil R (2005) An engineering model for transient analysis of grounding system under lightning strikes: nonuniform transmission-line approach. IEEE Trans Power Del 20(2):722–730

    Article  Google Scholar 

  9. Sunde ED (1968) Earth conduction effects in transmission systems. Bell Telephone Laboratories incorporated, New York, NY, USA

    Google Scholar 

  10. Qi L, Cui X, Zhao Z, Li H (2007) Grounding performance analysis of the substation grounding grids by finite element method in frequency domain. IEEE Trans Magn 43(4):1181–1184

    Article  Google Scholar 

  11. Olsen RG, Grcev L (2015) Analysis of high frequency grounds: comparison of theory and experiment. IEEE Trans Ind Appl 51(6):4889–4899

    Article  Google Scholar 

  12. Karami H, Sheshyekani K, Rachidi F (2017) Mixed-potential integral equation for full-wave modeling of grounding systems buried in a lossy multilayer stratified ground. IEEE Trans Electromagn Compat 59(5):1505–1513

    Article  Google Scholar 

  13. Grcev L, Dawalibi F (1990) An electromagnetic model for transients in grounding systems. IEEE Trans Power Del 5(4):1773–1781

    Article  Google Scholar 

  14. Popov M, Grcev L, Hoidalen HK, Gustavsen B, Terzija V (2015) Investigation of the overvoltage and fast transient phenomena on transformer terminals by taking into account the grounding effects. IEEE Trans Ind Appl 51(6):5218–5227

    Article  Google Scholar 

  15. Alípio R, Visacro S (2014) Impulse efficiency of grounding electrodes: Effect of frequency-dependent soil parameters. IEEE Trans Power Del 29(2):716–723

    Article  Google Scholar 

  16. Grcev L (2009) Time- and frequency-dependent lightning surge characteristics of grounding electrodes. IEEE Trans Power Del 24(4):2186–2196

    Article  Google Scholar 

  17. Chen H, Du Y (2019) Lightning grounding grid model considering both the frequency dependent behavior and ionization phenomenon. IEEE Trans Electromagn Compat 61(1):157–165

    Article  Google Scholar 

  18. Liew AC, Darveniza M (1974) Dynamic model of impulse characteristics of concentrated earths. IEE Proc 121(2):123–135

    Google Scholar 

  19. Elzowawi A, Haddad A, Griffiths H, Clark D (2015) Investigation of soil ionization propagation in two-layer soil samples. In: Proceedings of the International University Power Engineering Conference Stoke on Trent. pp. 1-5

  20. He J, Zhang B, Zeng R, Zhang B (2011) Experimental studies of impulse breakdown delay characteristics of soil. IEEE Trans Power Del 26(3):1600–1607

    Article  Google Scholar 

  21. Yutthagowith P, Ametani A, Nagaoka N, Baba Y (2011) Application of the partial element equivalent circuit method to analysis of transient potential rises in grounding systems. IEEE Trans Electromagn Compat 53(3):726–736

    Article  Google Scholar 

  22. Chen H, Du Y (2019) Lightning grounding grid model considering both the frequency-dependent behavior and ionization phenomenon. IEEE Trans Electromagn Compat 61(1):157–165

    Article  Google Scholar 

  23. Visacro S, Alipio R, Vale MHM, Pereira C (2011) The response of grounding electrodes to lightning currents: the effect of frequency-dependent soil resistivity and permittivity. IEEE Trans Electromagn Compat 53(2):401–406

    Article  Google Scholar 

  24. De Conti A, Emdio MPS (2016) Extension of a modal domain transmission line model to include frequency-dependent ground parameters. Electric Power Syst Res 138:120–130

    Article  Google Scholar 

  25. Tarasov A, Titov K (2013) On the use of the Cole-Cole equations in spectral induced polarization Geophys. J Int 195(1):352–356

    Google Scholar 

  26. Alipio R, Visacro S (2017) Time-domain analysis of frequency- dependent electrical parameters of soil. IEEE Trans Electromagn Compat 59(3):873–878

    Article  Google Scholar 

  27. Seidel M, Tezkan B (2017) 1D Cole-Cole inversion of TEM transients influenced by induced polarization. J Appl Geophys 138:220–232

    Article  Google Scholar 

  28. Li ZX, Rao SW (2018) Frequency domain soil parameters inversion of horizontally multilayered earth model with considering high-frequency field. IET Gen Trans Distrib 12(21):5690–5699

    Article  Google Scholar 

  29. Li ZX, Rao SW (2019) Estimation of frequency domain soil parameters of horizontally multilayered earth by using Cole-Cole model based on the parallel genetic algorithm. IET Gen Trans Distrib 13(9):1746–1754

    Article  Google Scholar 

  30. Ruehli AE (1974) Equivalent circuit models for three-dimensional multi conductor systems. IEEE Trans Microw Theory Tech 22(3):216–221

    Article  Google Scholar 

  31. Yutthagowith P, Ametani A, Nagaoka N, Baba Y (2009) Lightning induced voltage over lossy ground by a hybrid electromagnetic-circuit model method with Cooray-Rubinstein formula. IEEE Trans Electromagn Compat 51(4):975–985

    Article  Google Scholar 

  32. Visacro S, Soares A (2005) HEM: a model for simulation of lightning related engineering problems. IEEE Trans Power 20(2):1206–1208

    Article  Google Scholar 

  33. Araneo R, Celozzi S (2002) Extraction of equivalent lumped circuits of discontinuities using the finite-difference time-domain method. Proc IEEE Electromagn Compat Symp 1:119–122

    Google Scholar 

  34. Celozzi S, D’Amore M (1996) Magnetic field attenuation of nonlinear shields. IEEE Trans Electromagn Compat 38(3):318–326

    Article  Google Scholar 

  35. Li Z-X, Yin Y, Zhang C-X, Zhang L-C (2014) A mathematical model for the transient lightning response from grounding systems. Prog Electromagn Res 57:47–61

    Article  Google Scholar 

  36. Poljak D, Doric V (2006) Wire antenna model for transient analysis of simple grounding systems, part I: the vertical grounding electrode. Progress Electromagn Res 64:149–166

    Article  Google Scholar 

  37. Kherif O, Chiheb S, Teguar M, Mekhaldi A, Harid N (2018) Time-domain modeling of grounding systems impulse response incorporating nonlinear and frequency-dependent aspects. IEEE Trans Electromagn Compat 60(4):907–916

    Article  Google Scholar 

  38. Harrington RF (1968) Field computation by moment methods. Macmillan, New York

    Google Scholar 

  39. Cidras J, Otero AF, Garrido C (2000) Nodal frequency analysis of grounding systems considering the soil ionization effect. IEEE Trans Power Del 15(1):103–107

    Article  Google Scholar 

  40. Li Z, Fan J (2008) Numerical calculation of grounding system in low frequency domain based on the boundary element method. Int J Numer Methods Eng 73:685–705

    Article  MATH  Google Scholar 

  41. Grover FW (1962) Inductance calculations [M]. Dover Publications, New York

    Google Scholar 

  42. Ruehli AE, Antonini G, Jiang LJ (2013) Skin-effect loss models for time-and frequency domain PEEC solver. Proc IEEE 101(2):451–472

    Article  Google Scholar 

  43. Araneo R, Lovat G, Celozzi S (2011) Shielding effectiveness of periodic screens against finite high-impedance near-field sources. IEEE Trans Electromagn Compat 53(3):706–716

    Article  Google Scholar 

  44. Kourkoulos V, Cangellaris AC (2006) Accurate approximation of Green’s functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves. IEEE Trans Antennas Propag 54(5):1568–1576

    Article  MathSciNet  MATH  Google Scholar 

  45. Merheim, B (1992) Modellierung von hochspannungs erdersystemen und vergleich mit messungen ihres dynamischen verhaltens,” (in English), Dipl.Ing. thesis, Diplomaufgabe, Inst. Allgemeine ochspannungstechnik, Technischen Hochschule, Aachen, Germany

  46. Rochereau H, Merheim B (1993) Application of the transmission lines theory and EMTP program for modelisation of grounding systems in high frequency range. In: Collection de notes internes de la Direction des Etudes et Recherches Electricité de France. 93NR00059: 1–31

  47. Markovski B, Grcev L, Arnautovski-Toseva V (2020) Fast and accurate transient analysis of large grounding systems in multilayer soil. IEEE Trans Power Deliv. https://doi.org/10.1109/TPWRD.2020.2985926

    Article  Google Scholar 

  48. Harid N, Griffiths H, Mousa S, Clark D, Robson S, Haddad A (2015) On the analysis of impulse test results on grounding systems. IEEE Trans Ind Appl 51(6):5324–5334

    Article  Google Scholar 

  49. Grcev L (1996) Computer analysis of transient voltages in large grounding systems. IEEE Trans Power Del 11(2):8–823

    Article  Google Scholar 

  50. Jamali M, Niasati M, Jazaeri M (2019) A two-layer soil model for the calculation of electrical parameters of grounding systems under lightning strikes. Electric Power Compon Syst 47(1):181–191

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the respected reviewers for their valuable suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandasamy Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, K.P., Chandrasekaran, K. Transient behaviour of grounding systems in multilayer soil under lightning strikes. Electr Eng 104, 1205–1218 (2022). https://doi.org/10.1007/s00202-021-01367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01367-6

Keywords

Navigation