Skip to main content
Log in

Power system state forecasting using machine learning techniques

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Modern power sector requires grid observability under all scenarios for its ideal functioning. This enforces the operator to incorporate state estimation solutions based on a priori measurements to deduce the corresponding operating states of the grid. The key principle for such aforementioned algorithms lies on an occurrence of an over determined class of system having an ample redundancy in the measurements. Operators employ state forecasting solutions to counter the loss of real-time measurements. This work encompasses a critical comparison between several machine learning models along with ARIMA and time delayed neural network architecture for proper forecasting of operating states under normal as well as contingency scenarios. To showcase the efficacy of the proposed approach, this work incorporates a comprehensive comparison between them based on RMSE, MSE and MAE index. Copula-based synthetic data generation based on Gaussian multivariate distribution of the a priori measurements and operating states along with optimal hyper-parameter tuning of the models have shown the effectiveness of such algorithms in predicting future state estimates. The proposed machine learning models can be also seen to showcase an effective forecasting strategy under varying noise scenarios. This work also showcases the implementation of the models for real-time state forecasting strategy having computational times in the order of micro seconds. All the simulations have been carried out on the standard IEEE 14 bus test bench to support the former proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

The data sets are available from the corresponding author on request.

Code availability

The custom code is available from the corresponding author on request.

Abbreviations

AHFASE:

Asynchronous hierarchical forecasting-aided state estimator

ARIMA:

Autoregressive integrated moving average

DSE:

Dynamic state estimator

EGPR:

Exponential Gaussian process regression

FGSVM:

Fine Gaussian support vector machine

GPR:

Gaussian process regression

L-G:

Line-to-ground

LL-G:

Double line-to-ground

LLL-G:

Three phase-to-ground

MAE:

Mean absolute error

MGSVM:

Medium Gaussian support vector machine

MSE:

Mean squared error

PDC:

Phasor data concentrator

PDF:

Probability distribution function

PMUs:

Phasor measurement units

PSSE:

Power system state estimator

RLR:

Robust linear regression

RMSE:

Root mean squared error

RSE:

Robust state estimator

RTDS:

Real-time digital simulator

SEGPR:

Squared exponential Gaussian process regression

SVM:

Support vector machine

SCADA:

Supervisory control and data acquisition

TDNN:

Time delayed neural network

WLS:

Weighted least squares

References

  1. Schweppe FC, Wildes J (1970) Power system static-state estimation, part I: exact model. IEEE Trans Power Appar Syst 1:120–125

    Article  Google Scholar 

  2. Schweppe FC, Rom DB (1970) Power system static-state estimation, part II: approximate model. IEEE Trans Power Appar Syst 1:125–130

    Article  Google Scholar 

  3. Schweppe FC (1970) Power system static-state estimation, part III: implementation. IEEE Trans Power Appar Syst 1:130–135

    Article  Google Scholar 

  4. Larson RE, Tinney WF, Peschon J (1970) State estimation in power systems part I: theory and feasibility. IEEE Trans Power Appar Syst 3:345–352

    Article  Google Scholar 

  5. Larson RE, Tinney WF, Hajdu LP, Piercy DS (1970) State estimation in power systems part II: implementation and applications. IEEE Trans Power Appar Syst 3:353–363

    Article  Google Scholar 

  6. Zhang L, Kekatos V, Giannakis GB (2016) Scalable electric vehicle charging protocols. IEEE Trans Power Syst 32(2):1451–1462

    Google Scholar 

  7. Debs AS, Larson RE (1970) A dynamic estimator for tracking the state of a power system. IEEE Trans Power Appar Syst 7:1670–1678

    Article  Google Scholar 

  8. Morvaj Z (1985) A mathematical model of an electric power system for dynamic state estimation. Electric Power Syst Res 8(3):207–217

    Article  Google Scholar 

  9. Blood EA, Krogh BH, Ilic MD (2008) Electric power system static state estimation through Kalman filtering and load forecasting. In: IEEE, pp 1–6

  10. Durgaprasad G, Thakur SS (1998) Robust dynamic state estimation of power systems based on M-estimation and realistic modeling of system dynamics. IEEE Trans Power Syst 13(4):1331–1336

    Article  Google Scholar 

  11. Hassanzadeh M, Evrenosoğlu CY (2012) Power system state forecasting using regression analysis. In: IEEE, pp 1–6

  12. Da Silva AL, Do Coutto Filho MB, De Queiroz JF (1983) State forecasting in electric power systems. IET Gener Transm Distrib 130(5):237–244

    Article  Google Scholar 

  13. Hassanzadeh M, Evrenosoğlu CY, Mili L (2015) A short-term nodal voltage phasor forecasting method using temporal and spatial correlation. IEEE Trans Power Syst 31(5):3881–3890

    Article  Google Scholar 

  14. Talebi Ghadikolaee E, Kazemi A, Shayanfar HA (2020) Multi-area state estimation in a distribution network using Takagi-Sugeno model estimated by Kalman filter. Int Trans Electr Energy Syst 30:e12466

    Article  Google Scholar 

  15. Do Coutto Filho MB, de Souza JC, Glover JD (2019) Roots, achievements, and prospects of power system state estimation: a review on handling corrupted measurements. Int Trans Electr Energy Syst 29(4):e2779

    Article  Google Scholar 

  16. Do Coutto Filho MB, de Souza JC, Freund RS (2009) Forecasting-aided state estimation—part II: implementation. IEEE Trans Power Syst 24(4):1678–1685

    Article  Google Scholar 

  17. Do Coutto Filho MB, de Souza JC (2009) Forecasting-aided state estimation—part I: panorama. IEEE Trans Power Syst 24(4):1667–1677

    Article  Google Scholar 

  18. Sinha AK, Mondal JK (1999) Dynamic state estimator using ANN based bus load prediction. IEEE Trans Power Syst 14(4):1219–1925

    Article  Google Scholar 

  19. Goleijani S, Ameli MT (2018) Neural network-based power system dynamic state estimation using hybrid data from SCADA and phasor measurement units. Int Trans Electr Energy Syst 28(2):e2481

    Article  Google Scholar 

  20. Ranković A, Maksimović BM, Sarić AT, Lukič U (2015) ANN-based correlation of measurements in micro-grid state estimation. Int Trans Electr Energy Syst 25(10):2181–2202

    Article  Google Scholar 

  21. Zhang L, Wang G, Giannakis GB (2019) Real-time power system state estimation and forecasting via deep unrolled neural networks. IEEE Trans Signal Process 67(15):4069–4077

    Article  MATH  Google Scholar 

  22. Zhang L, Wang G, Giannakis GB (2018) Real-time power system state estimation via deep unrolled neural networks. In: IEEE, pp 907–911

  23. Carcangiu S, Fanni A, Pegoraro PA, Sias G, Sulis S (2020) Forecasting-aided monitoring for the distribution system state estimation. Complexity 2020:1–15

    Article  Google Scholar 

  24. Geetha SJ, Sharma A, Chakrabarti S (2019) Unscented Rauch–Tung–Streibel smoother-based power system forecasting-aided state estimator using hybrid measurements. IET Gener Transm Distrib 13(16):3583–3590

    Article  Google Scholar 

  25. Kundu S, Alam M, Roy BS, Thakur SS (2020) Comparison of Various Smoothing Parameter Techniques for Forecasting Power System States. In: IEEE, pp 212–217

  26. Kumar DMV, Srivastava SC (1999) Power system state forecasting using artificial neural networks. Electric Mach Power Syst 27(6):653–664

    Article  Google Scholar 

  27. Antončič M, Ilkovski M, Blažič B (2019) State forecasting in distribution networks. In: IEEE, pp 1–5

  28. Zufferey T, Renggli S, Hug G (2020) Probabilistic state forecasting and optimal voltage control in distribution grids under uncertainty. Electric Power Syst sRes 188:106562

    Article  Google Scholar 

  29. Ma W, Qiu J, Liu X, Xiao G, Duan J, Chen B (2019) Unscented Kalman filter with generalized correntropy loss for robust power system forecasting-aided state estimation. IEEE Trans Ind Inf 15(11):6091–6100

    Article  Google Scholar 

  30. Khosravi M, Banejad M, Shandiz HT (2016) Forecast aided measurements data synchronisation in robust power system state estimation. IET Gener Transm Distrib 10(10):2379–2388

    Article  Google Scholar 

  31. Geetha SJ, Chakrabarti S, Rajawat K, Terzija V (2019) An asynchronous decentralized forecasting-aided state estimator for power systems. IEEE Trans Power Syst 34(4):3059–3068

    Article  Google Scholar 

  32. Sharma A, Samantaray SR (2018) Power system tracking state estimator for smart grid under unreliable PMU data communication network. IEEE Sens J 18(5):2107–2116

    Article  Google Scholar 

  33. Sharma A, Srivastava SC, Chakrabarti S (2017) A cubature Kalman filter based power system dynamic state estimator. IEEE Trans Instrum Meas 66(8):2036–2045

    Article  Google Scholar 

  34. Zhao J, Zhang G, Dong ZY, La Scala M (2016) Robust forecasting aided power system state estimation considering state correlations. IEEE Trans Smart Grid 9(4):2658–2666

    Article  Google Scholar 

  35. He Y, Henze J, Sick B (2020) Forecasting power grid states for regional energy markets with deep neural networks. In: IEEE, pp 1–8

  36. Ji X, Yin Z, Zhang Y, Wang M, Zhang X, Zhang C, Wang D (2021) Real-time robust forecasting-aided state estimation of power system based on data-driven models. Int J Electr Power Energy Syst 125:106412

    Article  Google Scholar 

  37. Jahic A, Konjic T, Jahic A (2016) Forecast-aided distribution system state estimation. In: IET, pp 1–5

  38. Geetha SJ, Chakrabarti S, Rajawat K (2020) Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems. IEEE Sens J 21(2):2124–2133

    Article  Google Scholar 

  39. Cheng C, Bai X (2021) Robust forecasting-aided state estimation in power distribution systems with event-triggered transmission and reduced mixed measurements. IEEE Trans Power Syst

  40. Jaman S, Mazumder MRR, Ahmed MI, Rahman AAM (2019) Forecasting-aided state estimation for power distribution system application: case study. In: IEEE, pp 473–478

  41. Alhalali S, El-Shatshat R (2019) Foretasting-aided state estimator for an electrical distribution system. In: IEEE, pp 1–5

  42. Kekatos V, Wang G, Zhu H, Giannakis GB (2020) PSSE redux: convex relaxation, decentralized, robust, and dynamic solvers. Adv Electric Power Energy Static State Estim 171–208

  43. Zhao J, Gómez-Expósito A, Netto M, Mili L, Abur A, Terzija V, Kamwa I, Pal B, Singh AK, Qi J, Huang Z (2019) Power system dynamic state estimation: motivations, definitions, methodologies, and future work. IEEE Trans Power Syst 34(4):3188–3198

    Article  Google Scholar 

  44. Ahmad F, Rasool A, Ozsoy E, Sekar R, Sabanovic A, Elitaş M (2018) Distribution system state estimation—a step towards smart grid. Renew Sustain Energy Rev 81:2659–2671

    Article  Google Scholar 

  45. Eghbali O, Kazemzadeh R, Amiri K (2020) Multi-area state estimation based on PMU measurements in distribution networks. J Oper Autom Power Eng 8(1):65–74

    Google Scholar 

  46. Yu Y, Wang Z, Lu C (2018) A joint filter approach for reliable power system state estimation. IEEE Trans Instrum Meas 68(1):87–94

    Article  Google Scholar 

  47. Wang Y, Sun Y, Dinavahi V (2019) Robust forecasting-aided state estimation for power system against uncertainties. IEEE Trans Power Syst 35(1):691–702

    Article  Google Scholar 

  48. Zhao J, Netto M, Huang Z, Yu S, Gomez-Exposito A, Wang S, Kamwa I, Akhlaghi S, Mili L, Terzija V, Meliopoulos AS (2020) Roles of Dynamic State Estimation in Power System Modeling, Monitoring and Operation. IEEE Transactions on Power Systems

  49. Bhusal N, Gautam M (2020) Power system dynamic state estimation using extended and unscented Kalman filters. arXiv:2012.06069

  50. Asparouhov T, Muthén B (2010) Weighted least squares estimation with missing data. Mplus Tech Append 2010:1–10

    Google Scholar 

  51. Abur A, Exposito AG (2004) Power system state estimation: theory and implementation. CRC Press, Boca Raton

    Book  Google Scholar 

  52. Monticelli A (2012) State estimation in electric power systems: a generalized approach. Springer, Berlin

    Google Scholar 

  53. Gao Y, Hu X, Liu H (2010) Estimation of distribution algorithm based on multivariate Gaussian copulas. In: IEEE, no 1, pp 254–257

  54. Shirzadi A, Shahabi H, Chapi K, Bui DT, Pham BT, Shahedi K, Ahmad BB (2017) A comparative study between popular statistical and machine learning methods for simulating volume of landslides. CATENA 157:213–226

    Article  Google Scholar 

  55. Shi JQ, Choi T (2011) Gaussian process regression analysis for functional data. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  56. Widodo A, Yang BS (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574

    Article  Google Scholar 

  57. Bose D, Chanda CK, Chakrabarti A (2020) Vulnerability assessment of a power transmission network employing complex network theory in a resilience framework. Microsyst Technol 26:2443–2451

    Article  Google Scholar 

  58. Bhonsle JS, Deshpande SB, Renge MM, Harne RV (2004) A new approach for determining weakest bus and voltage stability margin in a power system. In: NPSC, pp 102–107

  59. Mukherjee D, Chakraborty S, Guchhait PK, Bhunia J (2020) Machine learning based solar power generation forecasting with and without MPPT controller. In: IEEE, pp 44–48

  60. Mukherjee D, Chakraborty S, Guchhait PK, Bhunia J (2020) Application of machine learning for speed and torque prediction of PMS motor in electric vehicles. In: IEEE, pp 129–133

Download references

Acknowledgements

Not applicable

Funding

No funding has been received for this particular research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed for analysis and interpretation of the results and data, drafting the article or revising it critically and preparing the final version.

Corresponding author

Correspondence to Debottam Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Chakraborty, S. & Ghosh, S. Power system state forecasting using machine learning techniques. Electr Eng 104, 283–305 (2022). https://doi.org/10.1007/s00202-021-01328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01328-z

Keywords

Navigation