Skip to main content
Log in

The effect of intermediate electrode on pseudo-spark switch performance with high repetition rate

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The present research focuses on the characteristics of a two-stage pseudo-spark switch (PSS). In this project, the pseudo-spark chamber contains three identical electrodes constructed from a stainless-steel material isolated by a glazed ceramic material used as an insulator, with 0.07 m in diameter and 0.003 m in thickness. A pseudo-spark switch of ~ 30 kV anode voltages, 24 kA with 5 ns current rise time and a repetition rate of 160 kHz has been constructed and used effectively. A trigger circuit is designed, constructed and successfully used in a multi-shot mode with high repetition rate; this operation produces a 2.1-kV, 2-μs trigger pulse in width, which is sufficient to provoke and breakdown the argon gas within the cathode. Such a switch has jitter time between pulses less than 8 ns and 8 × 1011A/s rise time rate at a working argon gas pressure 0.3 mbar. The intermediate electrode gives us a high-power switch, which has many applications in medical techniques and in discharge heated copper vapor laser applications. The PSS system lifetime is reliant on the electrodes material type and on insulator material used in the main gap of the PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Christiansen J, Frank K, Hartmann W, Kozlik C, Krauss-Vogt W, Michal R (1990) Physics and applications of pseudosparks. In: Gundersen MA, Schaefer G (eds) NATO ASI series (series B: physics), vol 219. Springer, Boston, MA, pp 89–107

    Google Scholar 

  2. Zhang J, Liu X (2018) Influence of electrode gap on breakdown voltages of a multi-gap pseudospark discharge device under nanosecond pulses. Phys Plasmas 25(1):013533

    Article  MathSciNet  Google Scholar 

  3. Zhang J, Liu X (2017) Characteristics of the pseudospark discharge influenced by parameters of nanosecond pulsed voltages. IEEE Trans Dielectr Elect Insul 24(4):2050

    Article  Google Scholar 

  4. Gundersen MA, Schaefer G (1990) Physics and applications of pseudosparks. Springer, Cham (llC NATO ASI Series)

    Book  Google Scholar 

  5. H Rahaman, V Pathania, DK Pal, RP Lamba, BL Meena, N Kumar, UN Pal, R Prakash, (2015) IJECT 6(1): 134-136

  6. Wong CS, Woo HJ, Yap SL (2007) A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part Beams 25:497–502

    Article  Google Scholar 

  7. VD Bochkov, DV Bochkov, VM Dyagilev, PV Panov, VI Teryoshin, IV Vasiliev, and VG Ushich, (2016) Development of high-power gas discharge and electronic vacuum devices for pulsed electrophysic. Current status and prospects. In: AIP Conference Proceedings 1771: 070005 doi: https://doi.org/10.1063/1.4964229

  8. Bochkov VD, Dyagilev VM, Ushich VG, Frants OB, Korolev YuD, Sheirlyakin IA, Frank K (2001) Sealed-off pseudospark switches for pulsed power applications (current status and prospects). IEEE Trans Plasma Sci 29(5):802–808

    Article  Google Scholar 

  9. Kumar N, Pal DK, Jadon AS, Pal UN, Rahaman H, Prakash R (2016) A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes. Rev Sci Instrum 87:033503. https://doi.org/10.1063/1.4943293

    Article  Google Scholar 

  10. Varun, Pal UN (2018) Investigation of electron beam generation in pseudospark discharge-based plasma cathode electron source. IEEE Trans Plasma Sci 46(6):2003–2008

    Article  Google Scholar 

  11. Yin H, Robb GRM, He W, Phelps ADR, Cross AW, Ronald K (2000) Pseudospark-based electron beam and Cherenkov maser experiments. Phys Plasmas 7:5195. https://doi.org/10.1063/1.1319637

    Article  Google Scholar 

  12. AW Cross, H Yin, W He, K Ronald and ADR Phelps, (2006) In: Proceedings of EPAC pp. 1711–1713, Edinburgh, Scotland

  13. H Yin, AW Cross, W He, K Ronald and ADR Phelps, (2006) In: 33rd EPS Conference on Plasma Phys Rome, 19–23 June 2006 ECA Vol. 30I, P-4.008

  14. C Jiang, Q Yao, B Eccles, A Kuthi, MA Gundersen, (2004) In: The Twenty-Sixth International Power Modulator Symposium, and 2004 High-Voltage Workshop 23–26 May 2004 San Francisco, CA, USA, doi: https://doi.org/10.1109/MODSYM.2004.1433588

  15. Hang-Ping Chen, John P. Verboncoeur, (2005) In: IEEE International Conference on Plasma Science 20–23 June, Monterey, CA, USA doi: https://doi.org/10.1109/PLASMA. 2005.359189

  16. Berkane A, Rebiai S, Bouanaka F, Bahouh H (2015) Computational study of RF micro-hollow cathode discharge. Phys Scr 90:065602. https://doi.org/10.1088/0031-8949/90/6/065602

    Article  Google Scholar 

  17. Zhang J, Liu X, Zhang Q (2017) Research on dynamical behavior of virtual anode in hollow cathode discharge. Phys Plasmas 24(5):053515

    Article  Google Scholar 

  18. Lateef KH, Hamad BH, Ahmad AK (2015) New design and construction of high-voltage, high-current pseudospark switch. IEEE Trans Plasma Sci 43:625

    Article  Google Scholar 

  19. Meena BL, Tyagi MS, Rao SSP, Mishra A, Khatun H, Jakhar A, Kumar M, Pal UN, Sharma AK (2008) Pseudospark switch development for pulse power modulators. J Phys Conf Ser 114:012057

    Article  Google Scholar 

  20. Stetter M, Felsner P, Christiansen J, Frank K, Gortler A, Hintz G, Mehr T, Stark R, Tkotz R (1995) Investigation of the different discharge mechanisms in pseudospark discharge. IEEE Trans Plasma Sci 23:283–293

    Article  Google Scholar 

  21. Benker W, Christiansen J, Frank K, Gundel H, Hartmann W (1989) Generation of intense pulsed electron beams by the pseudospark discharge. IEEE Trans Plasma Sci 17:754–757

    Article  Google Scholar 

  22. Chatzakis J, Hassan SM, Clark EL, Petridis C, Lee P, Tatarakis M (2008) High repetition rate pseudospark trigger generator. Rev Sci Inst 79:086103

    Article  Google Scholar 

  23. Frank K, Petzenhauser I, Blell U (2007) Multi-gap pseudospark switches for high voltage applications. IEEE Trans Dielectr Electr Insul 14:968–975

    Article  Google Scholar 

  24. Lamba RP, Pal UN, Meena BL, Prakash R (2018) A sealed-off double-gap pseudospark switch and its performance analysis. Plasma Sources Sci Technol 27:035003

    Article  Google Scholar 

  25. Frank K, Stark R, Christiansen J, Felsner P, Gorlter A, Hoffmann DHH, Prucker U, Schwandner A, Stetter M, Tkotz R, Urban J (1997) Spatial and time characteristics of high current, high voltage pseudospark discharge. IEEE Trans Plasma Sci 25:740–747

    Article  Google Scholar 

  26. Mechtersheimert G, Kohler R, Lasser T, Meyer R (1986) High repetition rate, fast current rise, pseudospark switch. J Phys E Sci Instrum 19:466–470

    Article  Google Scholar 

  27. Jiang XL, Han LJ (1992) Field escalation effect in the pulsed ion beam sources based on the pseudospark discharge. Rev Sci Instrum 63:2420–2421

    Article  Google Scholar 

  28. Zhang J, Zheng Y (2019) Simulation for the characteristics of plasma of the multi-gap pseudospark discharge. Plasma Chem Plasma Process 39:969–984. https://doi.org/10.1007/s11090-019-09983-8

    Article  Google Scholar 

  29. Hamad BH, Lateef KH, Ahmad AK (2016) Pseudo-spark switch (PSS) characteristics under different operation conditions. Phys Plasmas 23:083528

    Article  Google Scholar 

  30. BH Hamad, (2014) Construction and characterization of pseudospark high power plasma switch, Ph.D. thesis, Al Nahrain University, Iraq

  31. KH Lateef, AK Ahmad, BH Hamad, and AK Kadhim, (2015) Design and construction of current shunt resistor for high current pulses, Iraqi Patent 4155 (24 February 2015)

  32. Kumar N, Verma DK, Prajapati J, Kumar M, Meena BL, Tyagi MS, Srivastava V, Pal UN (2012) Experimental investigation of pseudospark generated electron beam. J Phys Conf Ser 390:012073

    Article  Google Scholar 

  33. Rao NSM, Haritha BV (2015) Enhancement of SMIB performance using PSS with advanced controllers. Int J Innov Res Comput Sci Technol 3(1):64–67

    Google Scholar 

  34. Barnett DH, Parson JM, Lynn CF, Kelly PM, Taylor M, Calico S, Scott MC, Dickens JC, Neuber AA, Mankowski JJ (2015) Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator. Rev Sci Instrum 86:034702

    Article  Google Scholar 

  35. Wang F, Kuthi A, Wang X, Gundersen MA (2005) Compact high repetition rate pseudospark pulse generator. IEEE Trans Plasma Sci 33(4):1177–1181

    Article  Google Scholar 

  36. Chatzakis J, Hassan SM, Clark EL, Petridis C, Lee P, Tatarakis M (2008) High repetition rate pseudospark trigger generator. Rev Sci Instrum 79(8):086103

    Article  Google Scholar 

  37. Yan J, Shen S, Wang Y, Zhang S, Cheng L, Ding W (2018) A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure. Rev Sci Instrum 89:065102

    Article  Google Scholar 

  38. Pal UN, Lamba RP, Varun, Meena BL, Frank K (2020) A multigap multiaperture pseudospark switch and its performance analysis for high-voltage applications. IEEE Trans Electron Devices 67(12):5600–5604. https://doi.org/10.1109/TED.2020.3029022

    Article  Google Scholar 

  39. Dewald E, Frank K, Hoffmann DHH, Tauschwitz A (2002) Plasma development in the low-pressure channel spark for pulsed intense electron beam generation. IEEE Trans Plasma Sci 30:363–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, B.H., Ahmad, A.K. The effect of intermediate electrode on pseudo-spark switch performance with high repetition rate. Electr Eng 104, 697–703 (2022). https://doi.org/10.1007/s00202-021-01319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01319-0

Keywords

Navigation