Skip to main content
Log in

Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

taken from the training dataset

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

BDD:

Bad data detection

D-FACTS:

Distributed flexible AC transmission system

FDIA:

False data injection attack

FPR:

False positive rate

IoT:

Internet of things

KNN:

K-nearest neighbors

PCA:

Principal component analysis

ROC:

Region of convergence

RTDS:

Real-time digital simulator

SCADA:

Supervisory control and data acquisition

TPR:

True positive rate

t-SNE:

t-distributed stochastic neighbor embedding

\(u\left( {a,b} \right) \) :

Uniform distribution with mean a and standard deviation b

WLS:

Weighted least squares

References

  1. Gai K, Xu K, Lu Z, Qiu M, Zhu L (2019) Fusion of cognitive wireless networks and edge computing. IEEE Wireless Commun 26(3):69–75

    Article  Google Scholar 

  2. Thomas MS, McDonald JD (2017) Power system SCADA and smart grids. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Horowitz BM, Pierce KM (2013) The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems. Syst Eng 16(4):401–412

    Article  Google Scholar 

  4. Liang G, Zhao J, Luo F, Weller SR, Dong ZY (2016) A review of false data injection attacks against modern power systems. IEEE Trans Smart Grid 8(4):1630–1638

    Article  Google Scholar 

  5. Deng R, Xiao G, Lu R, Liang H, Vasilakos AV (2016) False data injection on state estimation in power systems: attacks, impacts, and defense—a survey. IEEE Trans Ind Inform 13(2):411–423

    Article  Google Scholar 

  6. Xie L, Mo Y, Sinopoli B (2011) Integrity data attacks in power market operations. IEEE Trans Smart Grid 2(4):659–666

    Article  Google Scholar 

  7. Liu X, Li Z, Liu X, Li Z (2016) Masking transmission line outages via false data injection attacks. IEEE Trans Inform Foren Sec 11(7):1592–1602

    Article  Google Scholar 

  8. Gai K, Qiu M, Ming Z, Zhao H, Qiu L (2017) Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Trans Smart Grid 8(5):2431–2439

    Article  Google Scholar 

  9. Do Coutto Filho MB, de Souza JCS, Glover JD (2019) Roots, achievements, and prospects of power system state estimation: a review on handling corrupted measurements. Int Trans Elect Energy Syst 29(4):e2779

    Article  Google Scholar 

  10. Benedito RA, Alberto LFC, Bretas NG, London JBA Jr (2014) Power system state estimation: undetectable bad data. Int Trans Elect Energy Syst 24(1):91–107

    Article  Google Scholar 

  11. Liu Y, Ning P, Reiter MK (2011) False data injection attacks against state estimation in electric power grids. ACM Trans Inform Syst Sec (TISSEC) 14(1):1–33

    Article  Google Scholar 

  12. Bi S, Zhang YJ (2014) Using covert topological information for defense against malicious attacks on DC state estimation. IEEE J Select Areas Commun 32(7):1471–1485

    Article  Google Scholar 

  13. Yang Q, An D, Min R, Yu W, Yang X, Zhao W (2017) On optimal PMU placement-based defense against data integrity attacks in smart grid. IEEE Trans Inform Foren Sec 12(7):1735–1750

    Google Scholar 

  14. Gai K, Choo KKR, Qiu M, Zhu L (2018) Privacy-preserving content-oriented wireless communication in internet-of-things. IEEE Internet Things J 5(4):3059–3067

    Article  Google Scholar 

  15. Foroutan SA, Salmasi FR (2017) Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method. IET Cyber Phys Syst Theory Appl 2(4):161–171

    Article  Google Scholar 

  16. James J, Hou Y, Li VO (2018) Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans Ind Inform 14(7):3271–3280

    Article  Google Scholar 

  17. Moslemi R, Mesbahi A, Velni JM (2017) A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids. IEEE Trans Smart Grid 9(5):4930–4941

    Article  Google Scholar 

  18. Liu L, Esmalifalak M, Ding Q, Emesih VA, Han Z (2014) Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans Smart Grid 5(2):612–621

    Article  Google Scholar 

  19. Manandhar K, Cao X, Hu F, Liu Y (2014) Detection of faults and attacks including false data injection attack in smart grid using Kalman filter. IEEE Trans Control Netw Syst 1(4):370–379

    Article  MathSciNet  Google Scholar 

  20. Guan Y, Ge X (2017) Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks. IEEE Trans Signal Inform Process Over Netw 4(1):48–59

    Article  MathSciNet  Google Scholar 

  21. Ashok A, Govindarasu M, Ajjarapu V (2016) Online detection of stealthy false data injection attacks in power system state estimation. IEEE Trans Smart Grid 9(3):1636–1646

    Google Scholar 

  22. Anwar A, Mahmood A, Ray B, Mahmud MA, Tari Z (2020) Machine learning to ensure data integrity in power system topological network database. Electronics 9(4):693

    Article  Google Scholar 

  23. Kosut O, Jia L, Thomas RJ, Tong L (2010) Limiting false data attacks on power system state estimation. In: Proceedings of the 2010 44th annual conference on information sciences and systems (CISS). IEEE, pp 1–6

  24. Khanna K, Panigrahi BK, Joshi A (2017) AI-based approach to identify compromised meters in data integrity attacks on smart grid. IET Gener Transm Distrib 12(5):1052–1066

    Article  Google Scholar 

  25. Esmalifalak M, Liu L, Nguyen N, Zheng R, Han Z (2014) Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst J 11(3):1644–1652

    Article  Google Scholar 

  26. Ganjkhani M, Fallah SN, Badakhshan S, Shamshirband S, Chau K-w (2019) A novel detection algorithm to identify false data injection attacks on power system state estimation. Energies 12(11):2209

    Article  Google Scholar 

  27. Kosut O, Jia L, Thomas RJ, Tong L (2011) Malicious data attacks on the smart grid. IEEE Trans Smart Grid 2(4):645–658

    Article  Google Scholar 

  28. Li B, Xiao G, Lu R, Deng R, Bao H (2019) On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices. IEEE Trans Ind Inform 16(2):854–864

    Article  Google Scholar 

  29. Ozay M, Esnaola I, Vural FTY, Kulkarni SR, Poor HV (2015) Machine learning methods for attack detection in the smart grid. IEEE Trans Neural Netw Learn Syst 27(8):1773–1786

    Article  MathSciNet  Google Scholar 

  30. He Y, Mendis GJ, Wei J (2017) Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans Smart Grid 8(5):2505–2516

    Article  Google Scholar 

  31. Singh SK, Khanna K, Bose R, Panigrahi BK, Joshi A (2017) Joint-transformation-based detection of false data injection attacks in smart grid. IEEE Trans Ind Inform 14(1):89–97

    Article  Google Scholar 

  32. Li B, Ding T, Huang C, Zhao J, Yang Y, Chen Y (2018) Detecting false data injection attacks against power system state estimation with fast go-decomposition approach. IEEE Trans Ind Inform 15(5):2892–2904

    Article  Google Scholar 

  33. Xu R, Wang R, Guan Z, Wu L, Wu J, Du X (2017) Achieving efficient detection against false data injection attacks in smart grid. IEEE Access 5:13787–13798

    Article  Google Scholar 

  34. Zhao J, Zhang G, La Scala M, Dong ZY, Chen C, Wang J (2015) Short-term state forecasting-aided method for detection of smart grid general false data injection attacks. IEEE Trans Smart Grid 8(4):1580–1590

    Article  Google Scholar 

  35. Beg OA, Johnson TT, Davoudi A (2017) Detection of false-data injection attacks in cyber-physical dc microgrids. IEEE Trans Ind Inform 13(5):2693–2703

    Article  Google Scholar 

  36. Adhikari A, Morris TH, Pan S (2016) Applying non-nested generalized exemplars classification for cyber-power event and intrusion detection. IEEE Trans Smart Grid 9(5):3928–3941

    Article  Google Scholar 

  37. Zhang M, Shen C, He N, Han S, Li Q, Wang Q, Guan X (2019) False data injection attacks against smart gird state estimation: construction, detection and defense. Sci China Technol Sci 62(12):2077–2087

    Article  Google Scholar 

  38. Anwar A, Mahmood AN, Tari Z (2015) Identification of vulnerable node clusters against false data injection attack in an AMI based smart grid. Inform Syst 53:201–212

    Article  Google Scholar 

  39. Sou KC, Sandberg H, Johansson KH (2011) Electric power network security analysis via minimum cut relaxation. In: Proceedings of the 2011 50th IEEE conference on decision and control and European control conference. IEEE, pp 4054–4059

  40. Rahman MA, Mohsenian-Rad H (2012) False data injection attacks with incomplete information against smart power grids. In: Proceedings of the 2012 IEEE global communications conference (GLOBECOM). IEEE, pp 3153–3158

  41. Goodfellow I, Bengio Y, Courville A (2016) Deep learning, vol 1. MIT Press Cambridge, Cambridge

    MATH  Google Scholar 

  42. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  43. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation

  44. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 770–778

Download references

Funding

No funding has been received for this particular research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed for analysis and interpretation of the results and data, drafting the article or revising it critically and preparing the final version.

Corresponding author

Correspondence to Debottam Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Availability of data and material (data transparency)

The data sets are available from the corresponding author on request.

Code availability (software application or custom code)

The custom code is available from the corresponding author on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Chakraborty, S. & Ghosh, S. Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids. Electr Eng 104, 259–282 (2022). https://doi.org/10.1007/s00202-021-01278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01278-6

Keywords

Navigation