Skip to main content

Advertisement

Log in

Maximum power point tracking for photovoltaic systems under partial shading conditions via modified model predictive control

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In recent years different solutions for MPPT have been proposed in many papers. MPC method is considered as it is straightforward in both method and implementation. MPC method has a faster dynamic and better steady-state response. But, the dynamic and steady-state response depends on step size in the production of the reference current in MPC method. In this article, a MMPC method was used for a Cuk converter to achieve MPPT in photovoltaic systems. In the proposed method under uniform conditions, the PI controller applied to the error between the initial reference current from P&O and the actual current of the photovoltaic array. The reference current from the PI controller and the predictive current are applied to the cost function and the required switching pulses are generated. A two-stage algorithm was proposed under non-uniform conditions. IN the first stage, the algorithm sub-divides the current characteristics of the panel, and in the second stage of the algorithm, the MMPC method maintains the operating point at maximum power. The simulation and experimental results show that the proposed method has a faster dynamic response and low steady-state power ripple. The simulation and experimental results demonstrates that the MMPC method tracks the MPP more accurately and quickly than the MPC method under PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Abbreviations

MPPT:

Maximum power point tracking

MPC:

Model predictive control

MMPC:

Modified model predictive control

P&O:

Perturb and observe

GMPP:

Global maximum power point

MPP:

Maximum power point

PSC:

Partial shading conditions

ANN:

Artificial intelligent network

PSO:

Particle swarm optimization

CSR:

Current source region

VSR:

Voltage source region

INC:

Incremental-conductance

References

  1. Laib A, Krim F, Talbi B, Kihal A, Feroura H (2018) Improved control for three phase dual-stage grid-connected PV systems based on predictive control strategy. J Control Eng Appl Inform 20(3):12–23

    Google Scholar 

  2. Belkaid A, Gaubert JP, Gherbi A (2016) an improved sliding mode control for maximum power point tracking in photovoltaic systems. J Control Eng Appl Inform 18(1):86–94

    Google Scholar 

  3. Bahmanpour M, Koofigar HR, Delshad M, Tosifian MH (2019) Nonlinear control and implementation of a hybrid power system. J Control Eng Appl Inform 21(1):70–78

    Google Scholar 

  4. Azzouzi M (2013) Optimization of photovoltaic generator by using PO algorithm under different weather conditions. J Control Eng Appl Inform 15(2):12–19

    MathSciNet  Google Scholar 

  5. Bhajana V, Drabek P (2016) A new non-isolated zero current switching bidirectional buck-boost dc-dc converter for energy storage systems. Revue Roumaine Sci Techn-Ser Electrotechn Energ 61(2):183–187

    Google Scholar 

  6. Lokanadham M, Bhaskar KV (2012) Incremental conductance based maximum power point tracking (MPPT) for photovoltaic system. Int J Eng Res Appl (IJERA) 2(2):1420–1424

    Google Scholar 

  7. Salameh ZM, Dagher F, Lynch WA (1991) Step-down maximum power point tracker for photovoltaic systems. Sol Energy 46(5):279–282

    Article  Google Scholar 

  8. Alghuwainem SM (1994) Matching of a dc motor to a photovoltaic generator using a step-up converter with a current-locked loop. IEEE Trans Energy Convers 9(1):192–198

    Article  Google Scholar 

  9. Leedy AW, Garcia KE (2013) Approximation of PV characteristic curves for use in maximum power point tracking algorithms. In: 45th southeastern symposium on system theory, pp 88–93

  10. EL-Din AH, Mekhamer SF, EL-Helw HM (2018) Maximum power point tracking under partial shading condition using particle swarm optimization with DC–DC boost converter. In: 2018 53rd international universities power engineering conference (UPEC), pp 1–6

  11. Ali ZM, Quynh NV, Dadfar S, Nakamura H (2020) Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions. J Clean Prod 271:122243

    Article  Google Scholar 

  12. Kavya M, Jayalalitha S (2020) Developments in perturb and observe algorithm for maximum power point tracking in photo voltaic panel: a review. Arch Comput Methods Eng, pp 1–11

  13. Kumar P, Mercy EL, Ebenezer RS (2020) PV fed high gain DC–DC boost converter for induction motor with adaptive hill climb MPPT method. Rec Trends Control Converter 3(2)

  14. Ulinuha A, Zulfikri A (2020) Enhancement of solar photovoltaic using maximum power point tracking based on hill climbing optimization algorithm. J Phys Conf Ser 1517:012096

    Article  Google Scholar 

  15. Shang L, Guo H, Zhu W (2020) An improved MPPT control strategy based on incremental conductance algorithm. Protect Control Mod Power Syst 5(1):1–8

    Article  Google Scholar 

  16. Feroz Mirza A, Mansoor M, Ling Q, Khan MI, Aldossary OM (2020) Advanced variable step size incremental conductance MPPT for a standalone PV system utilizing a GA-tuned PID controller. Energies 13(16):4153

    Article  Google Scholar 

  17. Abdel-Rahim O, Funato H (2014) Model predictive control based maximum power point tracking technique applied to ultra-step-up boost converter for PV applications. In: 2014 IEEE innovative smart grid technologies-Asia (ISGT ASIA), pp 138–142

  18. Lashab A, Sera D, Guerrero JM, Máthé L, Bouzid A (2017) Discrete model-predictive-control-based maximum power point tracking for PV systems: overview and evaluation. IEEE Trans Power Electron 33(8):7273–7287

    Article  Google Scholar 

  19. Shadmand MB, Mosa M, Balog RS, Rub HA (2014) An improved MPPT technique for high gain DC–DC converter using model predictive control for photovoltaic applications. In: 2014 IEEE applied power electronics conference and exposition—APEC 2014, pp 2993–2999

  20. Shadmand MB, Mosa M, Balog RS, Rub HA (2015) Maximum power point tracking of grid connected photovoltaic system employing model predictive control. In: 2015 IEEE applied power electronics conference and exposition (APEC), pp 3067–3074

  21. Jain S, Agarwal V (2007) A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking. IEEE Trans Power Electron 22(5):1928–1940

    Article  Google Scholar 

  22. Kakosimos PE, Kladas AG (2011) Implementation of photovoltaic array MPPT through fixed step predictive control technique. Renew Energy 36(9):2508–2514

    Article  Google Scholar 

  23. Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921

    Article  Google Scholar 

  24. Sajadian S, Ahmadi R (2016) Model predictive-based maximum power point tracking for grid-tied photovoltaic applications using a Z-source inverter. IEEE Trans Power Electron 31(11):7611–7620

    Article  Google Scholar 

  25. Belhachat F, Larbes C (2018) A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renew Sustain Energy Rev 92:513–553

    Article  Google Scholar 

  26. Sellami A, Kandoussi K, El Otmani R, Eljouad M, Hajjaji A, Lakrami F (2016) Improvement of perturb and observe method for PV array under partial shading conditions. In: 2016 International renewable and sustainable energy conference (IRSEC), pp 75–79. IEEE

  27. Xu L, Cheng R, Yang J (2020( A modified INC method for PV string under uniform irradiance and partially shaded conditions. IEEE Access 8:131340–131351

  28. Mathi DK, Chinthamalla R (2020) Global maximum power point tracking technique based on adaptive salp swarm algorithm and P&O techniques for a PV string under partially shaded conditions. Energy Sources Part A Recov Utiliz Environ Effects 1–18

  29. Farzaneh J (2020) A hybrid modified FA-ANFIS-P&O approach for MPPT in photovoltaic systems under PSCs. Int J Electron 107(5):703–718

    Article  Google Scholar 

  30. Lasheen M, Abdel-Salam M (2018) Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: a review and a novel hybrid approach. Energy Convers Manag 171:1002–1019

    Article  Google Scholar 

  31. Sen T, Pragallapati N, Agarwal V, Kumar R (2017) Global maximum power point tracking of PV arrays under partial shading conditions using a modified particle velocity-based PSO technique. IET Renew Power Gener 12(5):555–564

    Article  Google Scholar 

  32. Wu Z, Yu D, Kang X (2018) Application of improved chicken swarm optimization for MPPT in photovoltaic system. Optim Control Appl Methods 39(2):1029–1042

    Article  MathSciNet  Google Scholar 

  33. Li LL, Lin GQ, Tseng ML, Tan K, Lim MK (2018) A maximum power point tracking method for PV system with improved gravitational search algorithm. Appl Soft Comput 65:333–348

    Article  Google Scholar 

  34. Eltamaly AM, Al-Saud MS, Abokhalil AG, Farh HM (2020) Photovoltaic maximum power point tracking under dynamic partial shading changes by novel adaptive particle swarm optimization strategy. Trans Inst Meas Control 42(1):104–115

    Article  Google Scholar 

  35. Ahmed J, Salam Z (2018) An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Trans Sustain Energy 9(3):1487–1496

    Article  Google Scholar 

  36. Winston DP, Kumar BP, Christabel SC, Chamkha AJ, Sathyamurthy R (2018) Maximum power extraction in solar renewable power system—a bypass diode scanning approach. Comput Electr Eng 70:122–136

    Article  Google Scholar 

  37. Ramana VV, Mudlapur A, Damodaran RV, Venkatesaperumal B, Mishra S (2018) Efficient global peak tracking of PV system under mismatching conditions using searching technique and bisection method. In 2018 IEEMA engineer infinite conference (eTechNxT), pp 1–6. IEEE

  38. Selvakumar S, Madhusmita M, Koodalsamy C, Simon SP, Sood YR (2018) High-speed maximum power point tracking module for PV systems. IEEE Trans Industr Electron 66(2):1119–1129

    Article  Google Scholar 

  39. Başoğlu ME, Çakır B (2018) Hybrid global maximum power point tracking approach for photovoltaic power optimisers. IET Renew Power Gener 12(8):875–882

    Article  Google Scholar 

  40. Rocha M, Sampaio L, da Silva S (2018) Maximum power point extraction in PV array under partial shading conditions using GWO-assisted beta method. Renew Energy Power Qual J 1(16):450–455

    Article  Google Scholar 

  41. Mohamed MA, Diab AAZ, Rezk H (2019) Partial shading mitigation of PV systems via different meta-heuristic techniques. Renew Energy 130:1159–1175

    Article  Google Scholar 

  42. Eltamaly AM, Farh HM (2019) Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Sol Energy 177:306–316

    Article  Google Scholar 

  43. Huang C, Wang L, Long H, Luo X, Wang JH (2019) A hybrid global maximum power point tracking method for photovoltaic arrays under partial shading conditions. Optik 180:665–674

    Article  Google Scholar 

  44. Zhang W, Zhou G, Ni H, Sun Y (2019) A modified hybrid maximum power point tracking method for photovoltaic arrays under partially shading condition. IEEE Access 7:160091–160100

    Article  Google Scholar 

  45. Kermadi M, Salam Z, Ahmed J, Berkouk EM (2018) An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions. IEEE Trans Industr Electron 66(9):6990–7000

    Article  Google Scholar 

  46. Goud JS, Kalpana R, Singh B, Kumar S (2018) A global maximum power point tracking technique of partially shaded photovoltaic systems for constant voltage applications. IEEE Trans Sustain Energy 10(4):1950–1959

    Article  Google Scholar 

  47. Kota VR, Bhukya MN (2019) A novel global MPP tracking scheme based on shading pattern identification using artificial neural networks for photovoltaic power generation during partial shaded condition. IET Renew Power Gener 13(10):1647–1659

    Article  Google Scholar 

  48. Li W, Zhang G, Pan T, Zhang Z, Geng Y, Wang J (2019) A Lipschitz optimization-based MPPT algorithm for photovoltaic system under partial shading condition. IEEE Access 7:126323–126333

    Article  Google Scholar 

  49. Aquib M, Jain S (2018) A global maximum power point tracking technique based on current source region detection of IV curve. In: 2018 IEEMA engineer infinite conference (eTechNxT) (pp 1–5). IEEE

  50. Li X, Wen H, Chu G, Hu Y, Jiang L (2018) A novel power-increment based GMPPT algorithm for PV arrays under partial shading conditions. Sol Energy 169:353–361

    Article  Google Scholar 

  51. Samani L, Mirzaei R (2019) Model predictive control method to achieve maximum power point tracking without additional sensors in stand-alone renewable energy systems. Optik 185:1189–1204

    Article  Google Scholar 

  52. Cao Z (2014) Multi-phase smart converter for PV system. Doctoral dissertation, Virginia Tech

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loghman Samani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samani, L., Mirzaei, R. Maximum power point tracking for photovoltaic systems under partial shading conditions via modified model predictive control. Electr Eng 103, 1923–1947 (2021). https://doi.org/10.1007/s00202-020-01201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01201-5

Keywords

Navigation