Skip to main content
Log in

Analysis and validation of mathematical morphology filters for single-ended fault localization in VSC-HVDC links

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Fast and accurate fault detection and localization are important topics in voltage source converter-based high-voltage direct current transmission (VSC-HVDC) grids in order to isolate the fault after the first milliseconds of occurrence. Common signal processing methods used for detecting fault traveling wave (TW) peaks like Fourier transform, S-transform and wavelet-based techniques transform the signal into the frequency domain, requiring complicated computations. In this paper, the application of mathematical morphology (MM)-based filters for detecting and locating faults in VSC-HVDC links is studied. MM-based methods analyze the signal in the time domain and detect the wave peaks accurately. Multiple MM-based filters resulted from basic MM operators are presented and used for TW-based fault study in VSC-HVDC grids. Several fault cases are applied to the CIGRE VSC-HVDC model in PSCAD, and the MM-based scripts are written in MATLAB. The impact of different sizes and types of the structuring elements on the accuracy of peak detection is analyzed. The results show the accuracy of MM filters for detecting and locating fault transient in VSC-HVDC links. The proposed method gives accurate results for both low-impedance and high-impedance faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(I_p, I_n\) :

Positive and negative pole currents.

\(i_0, i_1\) :

Ground and conductor modal currents.

v :

Modal velocity.

f :

Frequency of cable calculations.

\(\varLambda _{k}\) :

Propagation constant.

d :

Determined cable location.

\(L_t\) :

Total transmission length.

\(t_i^R\), \(t_i^L\) :

The ith peak arrival time for the right and left sides, respectively.

f(n), g(n):

Input signal and the structuring element, respectively.

\(\delta _g\) , \(\in _g\) :

Dilation and erosion of the structuring element g.

\(op_g\) , \(cl_g\) :

Opening and closing for the structuring element g.

\(\varPsi (f)\) :

Morphological median filter for de-noising function f.

MG(f):

Morphological gradient for function f.

MMG(f):

Multi-resolution morphological gradient for function f.

SMMG(f):

Series multi-resolution morphological gradient for function f.

References

  1. Yang Y, Huang C (2020) A single-ended fault location method for DC lines in bipolar MMCHVDC system. Electr Eng 102:899–908. https://doi.org/10.1007/s00202-020-00922-x

    Article  MathSciNet  Google Scholar 

  2. Chang B, Cwikowski O, Barnes M, Shuttleworth R, Beddard A, Coventry P (2017) Review of different fault detection methods and their impact on pre-emptive vsc-hvdc dc protection performance. High Volt 2(4):211–219

    Article  Google Scholar 

  3. Ashouri M, Bak CL, Silva FFD (2018) A review of the protection algorithms for multi-terminal vcd-hvdc grids. In: 2018 IEEE international conference on industrial technology (ICIT), pp 1673–1678

  4. Halem N, Rajapakse A (2018) Local measurement based ultra-fast directional ROCOV scheme for protecting Bi-pole HVDC grids with a metallic return conductor. Electric Power Energy Syst 98:323–330

    Article  Google Scholar 

  5. Azizi S, Sanaye-Pasand M, Abedini M, Hassani A (2014) A traveling-wave-based methodology for wide-area fault location in multiterminal DC systems. IEEE Trans Power Deliv 29(6):2552–2560

    Article  Google Scholar 

  6. Liu J, Tai N Fan (2017) Transient-voltage-based protection scheme for DC line faults in the multiterminal VSC-HVDC systems. IEEE Trans Power Deliv 32(3:1483–1494

    Article  Google Scholar 

  7. Elanien A, Elserougi A, Abdel-Khalik A, Massoud A, Ahmed S (2016) A differential protection technique for multi-terminal HVDC. Electric Power Syst Res 130(1):78–88

    Article  Google Scholar 

  8. Ashouri M, da Silva FF, Bak CL (2020) On the application of modal transient analysis for online fault localization in HVDC cable bundles. IEEE Trans Power Deliv 35(3):1365–1378. https://doi.org/10.1109/TPWRD.2019.2942016

    Article  Google Scholar 

  9. Daisy M, Dashti R, Shaker HR (2016) A new fault-location method for HVDC transmission-line based on DC components of voltage and current under line parameter uncertainty. Electric Eng 99(2):573–582

    Article  Google Scholar 

  10. Sabug L, Musa A, Costa F, Monti A (2020) Real-time boundary wavelet transform-based DC fault protection system for MTDC grids. Int J Electr Power Energy Syst 115:105475

    Article  Google Scholar 

  11. Ashouri M, da Silva FF, Bak CL (2019) Online fault location in monopolar LCC-HVDC links with metallic return using modal transient data. In: 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems Europe (EEEIC I & CPS Europe)

  12. Ashouri M, da Silva FF, Bak CL (2019) A harmonic based pilot protection scheme for VSC-MTDC grids with PWM converters. Energies 12(6):1010

    Article  Google Scholar 

  13. Kazemi MV, Sadati SJ, Gholamian SA (2019) Adaptive frequency control support of a DFIG based on second-order derivative controller using data-driven method. Int Trans Electr Energy Syst 30(7):2050–7038

    Google Scholar 

  14. Li B, He J, Li Y et al (2019) A review of the protection for the multi-terminal VSC-HVDC grid. Prot Control Mod Power Syst 4:21. https://doi.org/10.1186/s41601-019-0136-2

    Article  Google Scholar 

  15. Goutsias J, Heijmans HJAM (2000) Nonlinear multiresolution signal decomposition schemes. i. morphological pyramids. IEEE Trans Image Process 9(11):1862–1876

    Article  MathSciNet  Google Scholar 

  16. Heijmans HJAM, Goutsias J (2000) Nonlinear multiresolution signal decomposition schemes. ii. morphological wavelets. IEEE Trans Image Process 9(11):1897–1913

    Article  MathSciNet  Google Scholar 

  17. Lin X, Zou L, Tian Q, Weng H, Liu P (2006) A series multiresolution morphological gradient-based criterion to identify ct saturation. IEEE Trans Power Deliv 21(3):1169–1175

    Article  Google Scholar 

  18. Lu Z, Turner DR, Wu QH, Fitch J, Mann S (2004) Morphological transform for detection of power quality disturbances. In: 2004 international conference on power system technology, 2004. PowerCon 2004., vol. 2, pp 1644–1649 Vol. 2

  19. Ametani A, Ohno T, Nagaoka N (2015) Cable system transients: theory, modeling and simulation (Wiley - IEEE). Wiley, Hoboken

    Book  Google Scholar 

  20. da Silva FF, Bak CL (2013) Electromagnetic transients in power cables (power systems). Springer, Berlin

    Book  Google Scholar 

  21. Wu Q, Lu Z, Ji T (2009) Protective relaying of power systems using mathematical morphology. Springer, Berlin

    Book  Google Scholar 

  22. Zou L, Liu P, Zhao Q (2005) Mathematical morphology based phase selection scheme in digital relaying. IEE Proc Gener Trans Distrib 152(2):157–163

    Article  Google Scholar 

  23. Gautam S, Brahma SM (2009) Overview of mathematical morphology in power systems: a tutorial approach. In: 2009 IEEE power energy society general meeting, pp 1–7

  24. Li G, Zhou M, Luo Y, Ni Y (2005) Power quality disturbance detection based on mathematical morphology and fractal technique. In: 2005 IEEE/PES transmission distribution conference exposition: Asia and Pacific, pp 1–6

  25. Wu QH, Zhang JF, Zhang DJ (2002) Ultra-high-speed directional protection of transmission lines using mathematical morphology. IEEE Power Eng Rev 22(11):54–54

    Article  Google Scholar 

  26. Lin X, Weng H, Liu H, Lu W, Liu P, Bo Z (2006) A novel adaptive single-phase reclosure scheme using dual-window transient energy ratio and mathematical morphology. IEEE Trans Power Deliv 21(4):1871–1877

    Article  Google Scholar 

  27. Vrana T, YangY Jovcic D, Dennetière S, Jardini J, Saad H (2013) The CIGRE B4 DC grid test system. Electra 270(1):10–19

    Google Scholar 

  28. Irnawan R, da Silva FF, Bak CL, Bregnhøj TC (2016) A categorization of converter station controllers within multi-terminal dc transmission systems. In: 2016 IEEE/PES transmission and distribution conference and exposition (T D), pp 1–5

  29. Yang Q, Blond SL, Aggarwal R, Wang Y, Li J (2017) New ANN method for multi-terminal HVDC protection relaying. Electr Power Syst Res 148:192–201. https://doi.org/10.1016/j.epsr.2017.03.024

    Article  Google Scholar 

  30. Kerf KD, Srivastava K, Reza M, Bekaert D, Cole S, Hertem DV, Belmans R (2011) Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems. IET Gener Trans Distrib 5:496. https://doi.org/10.1049/iet-gtd.2010.0587

    Article  Google Scholar 

  31. Mobarez M, Kashani MG, Chavan G, Bhattacharya S (20–24 September 2015) A novel control approach for protection of multi-terminal VSC based HVDC transmission system against DC faults. In: Proceedings of the 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, Montreal, QC, Canada. https://doi.org/10.1109/ecce.2015.7310254

  32. Liu J, Tai N, Fan C (2017) Transient-voltage-based protection scheme for DC line faults in the multiterminal VSC-HVDC system. IEEE Trans Power Deliv 32:1483–1494

    Article  Google Scholar 

  33. Zhao P, Chen Q, Sun K (2018) A novel protection method for VSC-MTDC cable based on the transient DC current using the S transform. Int J Electr Power Energy Syst 97:299–308. https://doi.org/10.1016/j.ijepes.2017.11.007

    Article  Google Scholar 

  34. Zou G, Feng Q, Huang Q, Sun C, Gao H (2018) A fast protection scheme for VSC based multi-terminal DC grid. Int J Electr Power Energy Syst 98:307–314. https://doi.org/10.1016/j.ijepes.2017.12.022

    Article  Google Scholar 

  35. Haleem NM, Rajapakse AD (2018) Local measurement based ultra-fast directional ROCOV scheme for protecting Bi-pole HVDC grids with a metallic return conductor. Int J Electr Power Energy Syst 98:323–330. https://doi.org/10.1016/j.ijepes.2017.11.033

    Article  Google Scholar 

  36. Tzelepis D, Dyśko A, Fusiek G, Nelson J, Niewczas P, Vozikis D, Orr P, Gordon N, Booth CD (2017) Single-ended differential protection in MTDC networks using optical sensors. IEEE Trans Power Deliv 32:1605–1615

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Ashouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, M., Faria da Silva, F. & Leth Bak, C. Analysis and validation of mathematical morphology filters for single-ended fault localization in VSC-HVDC links. Electr Eng 103, 1583–1596 (2021). https://doi.org/10.1007/s00202-020-01186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01186-1

Keywords

Navigation