Skip to main content

Utilization of zirconia nanoparticles for improving the electrical and physical characteristics of HV porcelain insulating material

Abstract

The effect of zirconium oxide nanoparticles (NZ) addition on the electrical and physical properties of porcelain insulators over high different sintering temperatures was investigated. Different amount of zirconia nanoparticles (0–8 wt%) was added to porcelain sample that obtained from local raw materials found in large quantities and excellent quality in the Sinai and Aswan (Egypt). Samples were produced by powder technology with compositions of 50% kaolin, 25% feldspar and 25% quartz. The prepared samples admixed with different amounts of zirconia were sintered at different temperatures (1100, 1200, 1300 and 1400 °C) for 2 h. The microstructures of some selected samples were characterized by scanning electron microscopy (SEM). Phase composition of some nanocomposites samples was identified using X-ray diffraction (XRD), to evaluate the thermal, structural and microstructural changes by increasing the concentration of zirconia. The electrical properties of different samples were evaluated by measuring the AC breakdown strength, the relative permittivity (εr) and dielectric loss (tan δ) at different frequencies at room temperature. A finite element method (FEM) axisymmetrical model of the samples is used to evaluate their breakdown strength. The results obtained revealed that, samples sintered at 1300 °C give the best electrical and physical properties. Also, nanocomposite porcelain sample admixed with 4 wt% zirconia nanoparticles and sintered at 1300 °C present the maximum density (3.678 g/cm3), minimum water absorption (0.031%) and minimum porosity (0.049%) values as well as good insulating characteristics and confirm the electro technical porcelain production feasibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Okolo CC et al (2015) Characterization of electrical porcelain insulators from local clays. Int J Res Granthaalayah 3:26–36

    Google Scholar 

  2. Liebermann J (2012) High-voltage insulators: basics and trends for producers Users and Students. Fraunhofer Institute for Ceramic Technologies and Systems IKTS , Hermsdorf

    Google Scholar 

  3. Contreras JE, Rodríguez EA (2017) Nanostructured insulators: a review of nanotechnology concepts for outdoor ceramic insulators. Ceram Int 43(12):8545–8550

    Google Scholar 

  4. Ibrahim A, Nasrat L, Elassal H (2014) Improvement of electrical performance for porcelain insulators using silicone rubber coating. Int J Innov Res Electr Electron Instrum Control Eng 2(8):1884–1888

    Google Scholar 

  5. Alexe B, Thai VQ, Huy NT, Dung TQ, Tu C (2019) Environmental effects on HV dielectric materials and related sensing technologies. Appl Sci 9(5):856

    Google Scholar 

  6. Dana K, Das S, Das KS (2004) Effect of substitution of fly ash for silica in triaxial kaolin silica feldspar system. J Eur Ceram Soc 24:3169–3175

    Google Scholar 

  7. Anih LU (2005) Indigenous manufacturer and characterization of electrical porcelain insulator. Niger J Technol 24(1):44–50

    Google Scholar 

  8. Harper C (2001) Handbook of Ceramics, Glasses, and Diamonds. McGraw-Hill Professional, New York

    Google Scholar 

  9. Sánchez E, Moreno A (2010) Porcelain tile: almost 30 years of steady scientific-technological evolution. Cer Int 36:831–845

    Google Scholar 

  10. Ramesh R, Sugumaran CP (2017)‏ Reduction of flashover in ceramic insulator with nanocomposites. In: 2017 3rd international conference on condition assessment techniques in electrical systems (CATCON). IEEE

  11. Tod JH (2019) A history of Electrical Porcelain Industry in the United States; Printed privately by Jack H. Todd. 1977. Available online: https://www.r-infinity.com/ebay/Electrical_Porcelain/Electrical_Porcelain_Adobe.pdf. Accessed 29 Jan.

  12. Nillav D, Pachori A (2015) Analysis of ceramic and non-ceramic insulator under different levels of salt contamination. Int J Nov Res Electr Mech Eng 2(2):37–42. Month: May–August, Available at: www.noveltyjournals.com.

  13. Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34:173–184

    Google Scholar 

  14. Roula A, Boudeghdegh K, Boufafa N (2009) Improving usual and dielectric properties of ceramic high voltage insulators. Cerâmica 55(334):206–208

    Google Scholar 

  15. Iqbal Y, Lee W (2000) Microstructural evolution in tri-axial porcelain. J Am Ceram Soc 83:3121–3127

    Google Scholar 

  16. Iqbal Y, Lee W (1999) Fired porcelain microstructures revisited. J Am Ceram Soc 82:3279–3621

    Google Scholar 

  17. Olupot P, Jonsson S, Byaruhanga J (2010) Study of glazes and their effects on properties of triaxial electrical porcelains from Ugandan minerals. J Mater Eng Perform 19:1133–1142

    Google Scholar 

  18. Sekar T, Ganesan N, Nampoothiri N (2011) Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. Int J Eng Sci 3(7):5436–5440

    Google Scholar 

  19. Rodríguez EA, Niño CJ, Contreras JE, Vázquez-Rodríguez FJ, López-Perales JF, Aguilar-Martínez JA, Puente-Ornelas R, Lara Banda M (2019) Influence of incorporation of fired porcelain scrap as partial replacement of quartz on properties of an electrical porcelain. J Clean Prod 233:501–509

    Google Scholar 

  20. Fassbinder G (2002) A new ceramic body concept for high strength HV insulators. LAPP, Stuttgart

    Google Scholar 

  21. Caligaris R, Quaranta N, Caligaris M, Benavidez E (2000) Nontraditional raw materials in ceramic industry. Bol Soc Esp Ceram 39(5):623–626

    Google Scholar 

  22. Goeuriot D, Belnou F, Goeuriot P, Valdivieso F (2004) Nanosized alumina from boehmite additions in alumina porcelain 1. Effect on reactivity and mullitisation. Ceramics Int 30:883–892

    Google Scholar 

  23. Goeuriot D, Belnou F, Goeuriot P, Valdivieso F (2007) Nanosized alumina from boehmite additions in alumina porcelain. Part 2: effect on material properties. Ceramics Int 33:1243–1249

    Google Scholar 

  24. Zhuang J, Liu P, Dai W, Fu X (2010) A novel application of nano anticontamination technology for outdoor high-voltage ceramic insulators. Int J Appl Ceram Technol 7:E46–E53

    Google Scholar 

  25. Contreras JE (2014) Influencia de la inserción de nano-óxidos cerámicos sobre la microestructura y propiedades de una porcelana triaxial. PhD Thesis, FIME-UANL, Mexico

  26. Aigbodion V, Achiv F, Agunsoye O, Isah L (2015) Evaluation of the electrical porcelain properties of alumina-silicate nano-clay. J Chin Adv Mater Soc 4:99–109

    Google Scholar 

  27. Alonso-De la Garza DA, Rodríguez EA, Contreras JE, López-Perales JF, Díaz-Tato L, Ruiz-Valdés JJ, Vázquez-Rodríguez FJ, Álvarez-Méndez A (2020) Effect of nano-TiO2 content on the mechano-physical properties of electro-technical porcelain. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123469

    Article  Google Scholar 

  28. Correia SL, Oliveira APN, Hotza D, Segadaes AM (2006) Properties of tri-axial porcelain bodies: interpretation of statistical modeling. J Am Ceram Soc 89(11):3356–3365

    Google Scholar 

  29. Belhouchet K et al (2019) Improvement of mechanical and dielectric properties of porcelain insulators using economic raw materials. Boletín de la Sociedad Española de Cerámica y Vidrio 58(1):28–37

    Google Scholar 

  30. Kumar Paul B, Haldar K, Roy D, Bagchi B, Bhattacharya A, Das S (2014) Abrupt change of dielectric properties in mullite due to titanium and strontium incorporation by sol–gel method. J Adv Ceram 3(4):278–286

    Google Scholar 

  31. Gautam CR, Madheshiya A, Mazumder R (2014) Preparation, crystallization, microstructure and dielectric properties of lead bismuth titanate borosilicate glass ceramics. J Adv Ceram 3:194–206

    Google Scholar 

  32. Hirvonen A, Nowak R, Yamamoto Y, Sekino T, Niihara K (2006) Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc 26(8):1497–1505

    Google Scholar 

  33. Ray JC, Park DW, Ahn WS (2006) Chemical synthesis of stabilized nanocrystalline zirconia powders. J Indust Eng Chem 12(1):142–148

    Google Scholar 

  34. Dutta G, Hembram KP, Rao GM, Waghmare UV (2006) Effects of O vacancies and C doping on dielectric properties of ZrO2Zr O2: a first-principles study. Appl Phys Lett 89(20), Article ID 202904

  35. Keiteb AS et al (2016) Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J Nanomater. https://doi.org/10.1155/2016/1913609

    Article  Google Scholar 

  36. Reddy BM, Sreekanth PM, Yamada Y, Kobayashi T (2005) Surface characterization and catalytic activity of sulfate molybdate- and tungstate-promoted Al2O3–ZrO2 solid acid catalysts. J Mol Catal A 227(1–2):81–89

    Google Scholar 

  37. Mueller R, Jossen R, Pratsinis SE, Watson M, Akhtar MK (2004) Zirconia nanoparticles made in spray flames at high production rates. J Am Ceram Soc 87(2):197–202

    Google Scholar 

  38. Negahdary M et al (2013) Synthesis of zirconia nanoparticles and their ameliorative roles as additives concrete structures. J Chem‏. https://doi.org/10.1155/2013/314862

    Article  Google Scholar 

  39. ASTM C20 (2010) Standard test methods for apparent porosity, water absorption, apparent specific gravity and bulk modulus of burned refractory brick and shapes. ASTM International, West Conshohocken

    Google Scholar 

  40. ASTM C356-10 (2010) Standard test method for linear shrinkage of preformed high-temperature thermal insulation subjected to soaking heat. ASTM International, West Conshohocken

    Google Scholar 

  41. Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy, chapter 2. Springer, Berlin Heidelberg, pp 39–50

    Google Scholar 

  42. Gonzalez N, Custal MDA, Lalaouna S, Riba J, Armelin E (2016) Improvement of dielectric properties of natural rubber by adding perovskite nanoparticles. Eur Polym J 75:210–222

    Google Scholar 

  43. ASTM D149 (2003) Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  44. Zambrano A, Alejandra M et al (2017) Conceptual approach to thermal analysis and its main applications. Prospectiva 15(2):117–125

    Google Scholar 

  45. Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part 1: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28(4):219–224

    Google Scholar 

  46. Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25(11):2205–2213

    Google Scholar 

  47. Ptáček P (2016) Identification, characterization and properties of apatites, pp 111–175.‏ https://doi.org/10.5772/62211

  48. Bish D et al (2014) The first X-ray diffraction measurements on Mars. IUCrJ 1(6):514–522

    Google Scholar 

  49. Mehta NS et al (2019) Effect of sintering on physical, mechanical, and electrical properties of alumina-based porcelain insulator using economic raw materials doped with zirconia. J Aust Ceram Soc 55(4):987–997

    Google Scholar 

  50. El-Mehalawy N, Awaad M, Eliyan T, Abd-Allah MA, Naga SM (2018) Electrical properties of ZnO/alumina nano-composites for high voltage transmission line insulator. J Mater Sci: Mater Electron 29:13526–13533

    Google Scholar 

  51. Yang SQ, Yuan P, He HP, Qin ZH, Zhou Q, Zhu JX, Liu D (2012) Effect of reaction temperature on grafting of aminopropyltrieth oxy silane (APTES) onto kaolinite. J Appl Clay Sci 62:8–14

    Google Scholar 

  52. Ntah ZL et al (2017) Characterization of some archaeological ceramics and clay samples from Zamala-Far-northern part of Cameroon (West Central Africa). Cerâmica 63(367):413–422

    Google Scholar 

  53. Wang H et al (2011) Characterization and thermal behavior of kaolin. J Therm Anal Calorim 105(1):157–160

    Google Scholar 

  54. Kayani SA (2011) Mineralogical and Thermal Analyses of a Bangle Shard from Harrappa, an Indus Valley Settlement in Pakistan. Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi, Seria Geologie 57:69–73

    Google Scholar 

  55. Shunhua W, Xuesong W, Xiaoyong W, Hongxing Y, Shunqi G (2010) Effect of Bi2O3additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered at lower temperature. J Mater Sci Technol 26:472–476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Belal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eliyan, T., Desouky, O.A., Belal, E. et al. Utilization of zirconia nanoparticles for improving the electrical and physical characteristics of HV porcelain insulating material. Electr Eng 103, 1385–1399 (2021). https://doi.org/10.1007/s00202-020-01166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01166-5

Keywords

  • Porcelain insulator
  • XRD
  • Water absorption
  • Breakdown strength
  • FEM
  • Relative permittivity
  • Dielectric loss