Skip to main content

Advertisement

Log in

IGBT open-circuit fault detection for voltage source inverters using DC bus magnetic field signal

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a detection method of open-circuit fault of insulated-gate bipolar transistor in the voltage source inverters. The magnetic field signal at the DC bus of the inverter is collected and analysed to detect the fault. First, the simulation is developed for a voltage source inverter-fed induction machine drive which operates in healthy state and single switch open-circuit conditions. The faulty characteristic frequencies in the spectrum of DC-link current signal are derived on the basis of the power balance analysis through the inverter. Second, laboratory tests are implemented with a test bed of voltage source inverter-based induction machine drive in which a Hall sensor suited for the geometry complexity of the DC bus structure is utilized for measuring the magnetic field signal, which can be considered as an image of the simulated DC-link current. The fast Fourier transform of the magnetic field signal shows sharp increases in spectrum amplitude at the fundamental, second-order and third-order harmonics that they can be used as the indication to detect the fault. The approach using proposed signal offers several advantages such as single-sensor requirement, non-invasive and less costly device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Marzouki A, Hamouda MaFF (2015) A review of PWM voltage source converters based industrial applications. In: International conference on electrical systems for aircraft, railway, ship propulsion and road vehicles (ESARS), Aachen, Germany. https://doi.org/10.1109/ESARS.2015.7101520

  2. Fuchs FW (2003) Some diagnosis methods for voltage source inverters in variable speed drives with induction machines-a survey. In: The 29th annual conference of the IEEE Industrial Electronics Society, 2003. https://doi.org/10.1109/IECON.2003.1280259

  3. Lu B, Sharma SK (2009) A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans Ind Appl 45(5):1770–1777. https://doi.org/10.1109/TIA.2009.2027535

    Article  Google Scholar 

  4. Hyers RW, McGowan JG, Sullivan KL, Manwell JF, Syrett BC (2006) Condition monitoring and prognosis of utility scale wind turbines. Energy Mater 1(3):187–203. https://doi.org/10.1179/174892406X163397

    Article  Google Scholar 

  5. Zhang P, Lu D (2019) A survey of condition monitoring and fault diagnosis toward integrated O&M for wind turbines. Energies 12(14):2801. https://doi.org/10.3390/en12142801

    Article  Google Scholar 

  6. Moosavi S, Kazemi A, Akbari H (2019) A comparison of various open-circuit fault detection methods in the IGBT-based DC/AC inverter used in electric vehicle. Eng Fail Anal 96:223–235. https://doi.org/10.1016/j.engfailanal.2018.09.020

    Article  Google Scholar 

  7. Mendes AMS, Cardoso AM, Saraiva ES (1998) Voltage source inverter fault diagnosis in variable speed AC drives, by Park’s vector approach. In: Seventh international conference on power electronics and variable speed drives. https://doi.org/10.1109/IEMDC.1999.769220

  8. Mendes A, Marques Cardoso A (1999) Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park’s vector approach. In: International conference IEMD’99 electric machines and drives. https://doi.org/10.1109/IEMDC.1999.769220

  9. Errabelli RR, Mutschler P (2012) Fault-tolerant voltage source inverter for permanent magnet drives. IEEE Trans Power Electron 27(2):500–508. https://doi.org/10.1109/TPEL.2011.2135866

    Article  Google Scholar 

  10. Farhadi M, Fard MT, Abapour M, Hagh MT (2018) DCAC converter-fed induction motor drive with fault-tolerant capability under open-and short-circuit switch failures. IEEE Trans Power Electron 33(2):1609–1621. https://doi.org/10.1109/TPEL.2017.2683534

    Article  Google Scholar 

  11. Orlowska-Kowalska T, Sobanski P (2015) Simple diagnostic technique of a single IGBT open-circuit faults for a SVM-VSI vector controlled induction motor drive. Bull Pol Acad Sci Tech Scie 63(1):281–288. https://doi.org/10.1515/bpasts-2015-0032

    Article  Google Scholar 

  12. Kastha D, Bose BK (1994) Investigation of fault modes of voltage-fed inverter system for induction motor drive. IEEE Trans Ind Appl 30(4):1028–1038. https://doi.org/10.1109/28.297920

    Article  Google Scholar 

  13. Peuget R, Courtine S, Rognon J-P (1998) Fault detection and isolation on a PWM inverter by knowledge-based model. IEEE Trans Ind Appl 34(6):1318–1326. https://doi.org/10.1109/IAS.1997.629048

    Article  Google Scholar 

  14. Rothenhagen K, Fuchs FW (2005) Performance of diagnosis methods for IGBT open circuit faults in three phase voltage source inverters for AC variable speed drives. In: European conference on power electronics and applications. https://doi.org/10.1109/EPE.2005.219426

  15. Rothenhagen K, Fuchs FW (2004) Performance of diagnosis methods for IGBT open circuit faults in voltage source active rectifiers. In: IEEE 35th annual power electronics specialists conference. https://doi.org/10.1109/PESC.2004.1354769

  16. Abramik S, Sleszynski W, Nieznanski J, Piquet H (2003) A diagnostic method for on-line fault detection and localization in VSI-fed AC drives. In: 10th European conference on power electronics and applications, 2003

  17. Sleszynski W, Nieznanski J, Cichowski A (2009) Open-transistor fault diagnostics in voltage-source inverters by analyzing the load currents. IEEE Trans Ind Electron 56(11):4681–4688. https://doi.org/10.1109/TIE.2009.2023640

    Article  Google Scholar 

  18. Estima JO, Cardoso AJM (2011) A new approach for real-time multiple open-circuit fault diagnosis in voltage-source inverters. IEEE Trans Ind Appl 47(6):2487–2494. https://doi.org/10.1109/TIA.2011.2168800

    Article  Google Scholar 

  19. Yan H, Xu Y, Cai F, Zhang H, Zhao W, Gerada C (2018) PWM-VSI fault diagnosis for a PMSM drive based on the fuzzy logic approach. IEEE Trans Power Electron 34(1):759–768. https://doi.org/10.1109/tpel.2018.2814615

    Article  Google Scholar 

  20. Bae CJ, Lee DC, Nguyen TH (2019) Detection and identification of multiple IGBT open-circuit faults in PWM inverters for AC machine drives. IET Power Electron 12(4):923–931. https://doi.org/10.1049/iet-pel.2018.5188

    Article  Google Scholar 

  21. Yan H, Xu Y, Zou J, Fang Y (2017) A novel open-circuit fault diagnosis method for voltage source inverters with a single current sensor. IEEE Trans Power Electron 33(10):8775–8786. https://doi.org/10.1109/TPEL.2017.2776939

    Article  Google Scholar 

  22. Wu F, Zhao J (2016) Current similarity analysis-based open-circuit fault diagnosis for two-level three-phase PWM rectifier. IEEE Trans Power Electron 32(5):3935–3945. https://doi.org/10.1109/TPEL.2016.2587339

    Article  Google Scholar 

  23. Jlassi I, Estima JO, El Khil SK, Bellaaj NM, Cardoso AJM (2016) A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives. IEEE Trans Ind Appl 53(3):2894–2905. https://doi.org/10.1109/TIA.2016.2616398

    Article  Google Scholar 

  24. Raison B (2000) Detection et localisation de defaillances sur un entrainement Electrique, Institut National Polytechnique de Grenoble-INPG

  25. Gan C, Wu J, Yang S, Hu Y, Cao W (2015) Wavelet packet decomposition-based fault diagnosis scheme for SRM drives with a single current sensor. IEEE Trans Energy Convers 31(1):303–313. https://doi.org/10.1109/TEC.2015.2476835

    Article  Google Scholar 

  26. Moosavi S, Akbari H, Valipour S (2018) An open-circuit fault detection method with wavelet transform in IGBT-based DC/AC inverter used in electric vehicles. Int J Power Electron Drive Syst 9(3):1240. https://doi.org/10.11591/ijpeds.v9n3.pp1240-1250

    Article  Google Scholar 

  27. Trabelsi M, Boussak M, Mestre P, Gossa M (2011) An improved diagnosis technique for IGBTs open-circuit fault in PWM-VSI-fed induction motor drive. In: 2011 IEEE international symposium on industrial electronics. https://doi.org/10.1109/ISIE.2011.5984487

  28. Trabelsi M, Boussak M, Gossa M (2012) PWM-Switching pattern-based diagnosis scheme for single and multiple open-switch damages in VSI-fed induction motor drives. ISA Trans 51(2):333–344. https://doi.org/10.1016/j.isatra.2011.10.012

    Article  Google Scholar 

  29. Estima J, Cardoso A (2012) A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors. IEEE Trans Ind Electron 60(8):3496–3505. https://doi.org/10.1109/TIE.2012.2188877

    Article  Google Scholar 

  30. Caseiro LM, Mendes AM (2015) Real-time IGBT open-circuit fault diagnosis in three-level neutral-point-clamped voltage-source rectifiers based on instant voltage error. IEEE Trans Ind Electron 62(3):1669–1678. https://doi.org/10.1109/TIE.2014.2341558

    Article  Google Scholar 

  31. Zhang H, Li Z, Liu J, Cao H, Zhang X (2016) Voltage vector error fault diagnosis for open-circuit faults of three-phase four-wire active power filters. IEEE Trans Power Electron 32(3):2215–2226. https://doi.org/10.1109/TPEL.2016.2555583

    Article  Google Scholar 

  32. Abari I, Lahouar A, Hamouda M, Slama JBH, Al-Haddad K (2017) Fault detection methods for three-level NPC inverter based on DC-bus electromagnetic signatures. IEEE Trans Ind Electron 65(7):5224–5236. https://doi.org/10.1109/TIE.2017.2777378

    Article  Google Scholar 

  33. Wang K, Zhao HL, Tang Y, Zhang X, Zhang CJ (2018) Zero-current phenomena analysis of the single IGBT open circuit faults in two-level and three-level SVGs. J Power Electron 18(2):627–639. https://doi.org/10.6113/JPE.2018.18.2.627

    Article  Google Scholar 

  34. Jian-Jian Z, Yong C, Zhang-Yong C, Anjian Z (2019) Open-switch fault diagnosis method in voltage-source inverters based on phase currents. IEEE Access 7:63619–63625. https://doi.org/10.1109/ACCESS.2019.2913164

    Article  Google Scholar 

  35. Zhang J, Peng T, Yang C, Chen Z, Tao H, Yang C (2019) A voltage-based hierarchical diagnosis approach for open-circuit fault of two-level traction converters. Electronics 8(9):992. https://doi.org/10.3390/electronics8090992

    Article  Google Scholar 

  36. Li Z, Ma H, Bai Z, Wang Y, Wang B (2017) Fast transistor open-circuit faults diagnosis in grid-tied three-phase VSIs based on average bridge arm pole-to-pole voltages and error-adaptive thresholds. IEEE Trans Power Electron 33(9):8040–8051. https://doi.org/10.1109/TPEL.2017.2773130

    Article  Google Scholar 

  37. Mirafzal B (2014) Survey of fault-tolerance techniques for three-phase voltage source inverters. IEEE Trans Ind Electron 61(10):5192–5202. https://doi.org/10.1109/TIE.2014.2301712

    Article  Google Scholar 

  38. Estima JO, Freire NM, Cardoso AM (2013) Recent advances in fault diagnosis by Park’s vector approach. In: IEEE workshop on electrical machines design. Control and diagnosis (WEMDCD). https://doi.org/10.1109/WEMDCD.2013.6525187

  39. Riera-Guasp M, Antonino-Daviu JA, Capolino G-A (2015) Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Trans Ind Electron 62(3):1746–1759. https://doi.org/10.1109/TIE.2014.2375853

    Article  Google Scholar 

  40. Vu HG, Yahoui H, Hammouri H (2019) An experimental investigation of new electromagnetic field signal for stator asymmetric fault detection of doubly fed induction generators. Int Trans Electr Energy Syst 29(6):e12019. https://doi.org/10.1002/2050-7038.12019

    Article  Google Scholar 

  41. Bierhoff MH, Fuchs FW (2008) DC-link harmonics of three-phase voltage-source converters influenced by the pulsewidth-modulation strategy - An analysis. IEEE Trans Ind Electron 55(5):2085–2092. https://doi.org/10.1109/IECON.2005.1568954

    Article  Google Scholar 

  42. Mariscotti A (2002) Analysis of the DC-link current spectrum in voltage source inverters. IEEE Trans Circuits Syst I Fundam Theory Appl 49(4):484–491. https://doi.org/10.1109/ISCAS.1998.704023

    Article  Google Scholar 

  43. Hu L, Yacamini R (1992) Harmonic transfer through converters and HVDC links. IEEE Trans Power Electron 7(3):514–525. https://doi.org/10.1109/63.145139

    Article  Google Scholar 

  44. Nguyen PH, Han M (2014) Study on harmonic propagation of VSC-based HVDC systems. In: IEEE international conference on power system technology. https://doi.org/10.1109/POWERCON.2014.6993614

  45. Gillot C, Yahoui H, Rojat G (2006) Power drive investigation by spectral analysis of the electromagnetic field emitted by the DC bus. In: IEEE IECON 2006-32nd annual conference on industrial electronics. https://doi.org/10.1109/ISIE.2007.4374708

  46. Popovic R (2003) Hall effect devices. CRC Press, Boca Raton, pp 1–7

    Book  Google Scholar 

  47. Edelstein A (2007) Advances in magnetometry. J Phys Condens Matter 19(16):165217. https://doi.org/10.1088/0953-8984/19/16/165217

    Article  Google Scholar 

  48. Blackburn JL, Domin TJ (2007) Protective relaying: principles and applications. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Giang Vu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, HG., Yahoui, H. IGBT open-circuit fault detection for voltage source inverters using DC bus magnetic field signal. Electr Eng 103, 1691–1700 (2021). https://doi.org/10.1007/s00202-020-01161-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01161-w

Keywords

Navigation