Skip to main content
Log in

A new approach of tap changer maintenance incorporating nanoparticle insulating oil

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, maintenance process for on-load tap changer (OLTC) would be enhanced using nanofluid that developed by adding nanoparticles (titanium dioxide, TiO2) to the insulating oil. The occurrence of the internal arcs inside OLTC resulted in the formation of carbon atoms on the inner bonding points during its operation. Over time, these points became unusable since the contact resistance value was high. To increase the efficiency of the maintenance process, infrared radiation was used to excite the additive TiO2 atoms to attract carbon atoms. Electrical tests were performed before and after the proposed maintenance process according to IEC standards. The results showed significant differences in the maintenance process with and without nanoparticles. A prediction model to identify the OLTC state was constructed based on support vector machine classifier. The results revealed the ability of the predicted model to predict the OLTC state with accuracy 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang R, Zhang D, Li Z, Yang K, Mo S, Li L (2019) Mechanical fault diagnostics of power transformer on-load tap changers using dynamic time warping. IEEE Trans Instrum Measure 68:3119–3127

    Article  Google Scholar 

  2. Aziz T, Ketjoy N (2018) Enhancing PV penetration in LV networks using reactive power control and on load tap changer with existing transformers. IEEE Access 6:2683–2691

    Article  Google Scholar 

  3. Faiz J, Siahkolah B (2003) New solid-state onload tap-changers topology for distribution transformers. IEEE Trans Power Deliv 18:136–141

    Article  Google Scholar 

  4. Bahadornejad M, Nair N (2014) Intelligent control of on-load tap changing transformer. IEEE Trans Smart Grid 5:2255–2263

    Article  Google Scholar 

  5. Castro J, Lagos G, Gonzalez O (2017) Simulation and measuring transients in on-load tap changers. IEEE Latin Am Trans 15:1901–1907

    Article  Google Scholar 

  6. Seo J, Ma H, Saha T (2018) On savitzky-golay filtering for online condition monitoring of transformer on-load tap changer. IEEE Trans Power Deliv 33:1689–1698

    Article  Google Scholar 

  7. Zecchino A, Hu J, Coppo M, Marinelli M (2016) Experimental testing and model validation of a decoupled-phase on-load tap-changer transformer in an active network. IET Gener Transm Distrib 10:3834–3843

    Article  Google Scholar 

  8. Seo J, Ma H, Saha T (2017) A joint vibration and arcing measurement system for online condition monitoring of onload tap changer of the power transformer. IEEE Trans Power Deliv 2:1031–1038

    Article  Google Scholar 

  9. Kraiczy M, Stetz T, Braun M (2018) Parallel operation of transformers with on load tap changer and photovoltaic systems with reactive power control. IEEE Trans Smart Grid 9:6419–6428

    Article  Google Scholar 

  10. Liu X, Aichhorn A, Liu L, Li H (2012) Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans Smart Grid 3:897–906

    Article  Google Scholar 

  11. Kasztenny B, Rosolowski E, Izykowski J, Saha MM, Hillstrom B (1998) Fuzzy logic controller for on-load transformer tap changer. IEEE Trans Power Deliv 13:164–170

    Article  Google Scholar 

  12. Milano F (2011) Hybrid control model of under load tap changers. IEEE Trans Power Deliv 26:2837–2844

    Article  Google Scholar 

  13. Fourie R, Du H, Mouton T (2009) Development of a MV IGBT based solid-state tap changer. IEEE AFRICON 2009, 23–25 September 2009, Nairobi, Kenya

  14. López JV, Martínez S, Rodríguez CC, García SM, Fernández M, Olay C (2012) Electronic tap-changing stabilizers for medium-voltage lines optimum balanced circuit. IEEE Trans Power Deliv 27(4):1909–1918

    Article  Google Scholar 

  15. Fernández SM, García SM, Olay CC, Rodríguez JCC, García RV, López JV (2018) Electronic tap changer for very high power medium voltage lines with no series-parallel thyristors. IEEE Trans Ind Electron 65(7):5237–5249

    Article  Google Scholar 

  16. Mouli GRC, Bauer P, Wijekoon T, Panosyan A, Bärthlein E-M (2015) Design of a power electronic assisted OLTC for grid voltage regulation. IEEE Trans Power Deliv 30(3):1086–1095

    Article  Google Scholar 

  17. Quevedo JO, Cazakevicius FE, Beltrame RC, Marchesan TB, Michels L, Rech C, Schuch L (2017) Analysis and design of an electronic on-load tap changer distribution transformer for automatic voltage regulation. IEEE Trans Ind Electron 64(1):883–894

    Article  Google Scholar 

  18. Yousef-Zai FQ, O’Kelly D (1996) Solid-state on-load transformer tap changer. IEE Proc Electric Power Appl 143(6):481–491

    Article  Google Scholar 

  19. Faiz J, Siahkolah B (2003) New solid-state onload tap-changers topology for distribution transformers. IEEE Trans Power Delivery 18(1):136–141

    Article  Google Scholar 

  20. Yang M-Q, Zhang N, Yi-J Xu (2013) Synthesis of fullerene − , carbon nanotube − , and graphene − TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5:1156–1164

    Article  Google Scholar 

  21. Dessouky S, Abdelwahab SAM, Shaban M (2019) New approach to molded case circuit breakers maintenance system using nanoparticles. In: IEEE 20th International Conference on Dielectr. Liquids (ICDL), Roma, 2019, pp 23–27

  22. Abdelwahab SAM, Dessouky S, Shaban M (2020) Experimental investigation for the maintenance of molded case circuit breaker using nano oil. Electr Eng. https://doi.org/10.1007/s00202-020-01090-8

    Article  Google Scholar 

  23. Zhang Y, Tang ZR, Fu X, Xu YJ (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2 carbon composite materials? ACS Nano 4(12):7303–7314

    Article  Google Scholar 

  24. Wan G, Yu L, Peng X, Wang G, Huang X, Zhao H, Qin Y (2015) Preparation and microwave absorption properties of uniform TiO2@C core–shell nanocrystals. Royal Soc Chem RSC Adv 2015, pp. 77443–77448

  25. IEC 60076-2000 standard: power transformer

  26. Dessouky S, Abdelwahab SA, Shaban M (2017) Effect of titanium oxide Nanoparticles on breakdown strength of transformer oil. In: 2017 Nineteenth Internatl Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2017, pp 538–542

  27. Ziomek W, Vijayanm K, Boyd D, Kuby K, Franchek M (2011) High voltage power transformer insulation design, Electrical Insulation Conference (EIC). Annapolis, MD, pp 211–215

  28. Koley C, Purkait P, Chakravorti S (2006) Time-frequency representation of resistance for modeling of transformer winding under impulse test. IEEE Trans Power Deliv 21:1367–1374

    Article  Google Scholar 

  29. Chen X, Venkata S (1997) A three-phase three-winding core-type transformer model for low-frequency transient studies. IEEE Trans Power Deliv 12:775–782

    Article  Google Scholar 

  30. https://www.funtrivia.com/askft/Question123667.html

  31. Wojtoniszak M, Dolat D, Morawski A, Mijowska E (2012) Carbon-modified TiO2 for photocatalysis. Nanoscale Res Lett 7(1):235

    Article  Google Scholar 

  32. Emara M, Mansour D, Azmy A (2015) Dielectric properties of aged mineral oil filled with TiO2 Nanoparticles, 4th International Conference on Electrical. Power Energy Convers Syst (EPECS), Sharjah, pp 1–5

  33. Ripka P, Draxler K, Styblikova R (2013) Measurement of DC currents in the power grid by current transformer. IEEE Trans Magn 49:73–76

    Article  Google Scholar 

  34. IEC 60156 (2018) Insulating liquids—determination of the breakdown voltage at power frequency—test method. International Electrotechnical Commission

  35. IEC 61620:1998, Insulating liquids—Determination of the dielectric dissipation factor by measurement of the conductance and capacitance—Test method

  36. Liu T, Wang Z (2009) Design of power transformer fault diagnosis model based on support vector machine. In: International symposium on intelligent ubiquitous computing and education, Chengdu, China, pp 137–140

  37. Niu W, Xu L, Wu J (2009) Fault diagnosis and system development of power transformer based on support vector machine. In: 2nd IEEE International Conference on Compt. Sci Inf Technol, Beijing, China, pp 578–581

  38. Ni Y, Li J (2010) Faults diagnosis for power transformer based on support vector machine. In: 3rd International Conference on Biomed. Eng. and Inform. (BMEI 2010), Yantai, China, 2010, pp 2641–2644

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from Taif University Researchers Supporting Project Number (TURSP-2020/34), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif S. M. Ghoneim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoneim, S.S.M., Dessouky, S.S., Taha, I.B.M. et al. A new approach of tap changer maintenance incorporating nanoparticle insulating oil. Electr Eng 103, 931–944 (2021). https://doi.org/10.1007/s00202-020-01137-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01137-w

Keywords

Navigation