Skip to main content
Log in

Determination of heat transfer coefficient of finned housing of a TEFC variable speed motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes the analytical calculation of the heat transfer coefficient from the housing of a totally enclosed fan cooled (TEFC) machine during the active cooling. A particular focus is on the calculation of the heat transfer coefficient from the machine’s housing for different fan rotational speeds. The paper describes the challenges and provides solutions to dominate them during the analytical calculation of the heat transfer coefficient a TEFC electrical machine. Finally, the proposed method is validated experimentally on a totally enclosed fan cooled synchronous reluctance motor, and good correspondence between the analytical and experimental results is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rosu M et al (2017) Multiphysics simulation by design for electrical machines, power electronics and drives, 1st edn. Wiley-IEEE Press, Hoboken

    Google Scholar 

  2. Chong YC (2015) Thermal analysis and air flow modelling of electrical machines. The University of Edinburgh, Edinburgh

    Google Scholar 

  3. Staton DA, Cavagnino A (2008) Convection heat transfer and flow calculations suitable for electric machines thermal models. IEEE Trans Ind Electron 55(10):3509–3516

    Article  Google Scholar 

  4. Motor-CAD Software by Motor Design—EMag, Therm and Lab. https://www.motor-design.com/motor-cad-software/

  5. Mizuno S, Noda S, Matsushita M, Koyama T, Shiraishi S (2013) Development of a totally enclosed fan-cooled traction motor. IEEE Trans Ind Appl 49(4):1508–1514

    Article  Google Scholar 

  6. Ulbrich S, Kopte J, Proske J (2018) Cooling fin optimization on a TEFC electrical machine housing using a 2-D conjugate heat transfer model. IEEE Trans Ind Electron 65(2):1711–1718

    Article  Google Scholar 

  7. Mellor PH, Roberts D, Turner DR (1991) Lumped parameter thermal model for electrical machines of TEFC design. IEE Proc B Electr Power Appl 138(5):205

    Article  Google Scholar 

  8. Ronnberg K, Beniakar ME (2018) Thermal modelling of totally enclosed fan cooled motors. In: Proceedings—2018 23rd international conference on electrical machines, ICEM 2018, pp 2619–2625

  9. Boglietti A, Cavagnino A, Lazzari M, Pastorelli M (2003) A simplified thermal model for variable-speed self-cooled industrial induction motor. IEEE Trans Ind Appl 39(4):945–952

    Article  Google Scholar 

  10. Boglietti A, Cavagnino A, Staton D (2008) Determination of critical parameters in electrical machine thermal models. IEEE Trans Ind Appl 44(4):1150–1159

    Article  Google Scholar 

  11. Valenzuela MA, Tapia JA, Rooks JA (2004) Thermal evaluation of TEFC induction motors operating on frequency-controlled variable-speed drives. IEEE Trans Ind Appl 40(2):692–698

    Article  Google Scholar 

  12. Boglietti A, Cavagnino A, Staton DA (2005) TEFC induction motors thermal models: a parameter sensitivity analysis. IEEE Trans Ind Appl 41(3):756–763

    Article  Google Scholar 

  13. Valenzuela MA, Tapia JA (2008) Heat transfer and thermal design of finned frames for TEFC variable-speed motors. IEEE Trans Ind Electron 55(10):3500–3508

    Article  Google Scholar 

  14. Gai Y et al (2019) Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Ind Electron 66(3):1681–1692

    Article  Google Scholar 

  15. Nair DG, Jokinen T, Arkkio A (2016) Coupled analytical and 3D numerical thermal analysis of a TEFC induction motor. In: 2015 18th International conference on electrical machines and systems, ICEMS 2015, pp 103–108

  16. Shams Ghahfarokhi P, Kallaste A, Vaimann T, Rassolkin A, Belahcen A (2017) Determination of forced convection coefficient over a flat side of coil. In: 2017 IEEE 58th International scientific conference on power and electrical engineering of Riga Technical University (RTUCON), pp 1–4

  17. Incropera FP, DeWitt DP (1990) Fundamentals of heat and mass transfer. Wiley, Hoboken, NJ, USA

    Google Scholar 

  18. Shams Ghahfarokhi P, Kallaste A, Belahcen A, Vaimann T (2019) Determination of heat transfer coefficient for the air forced cooling over a flat side of coil. Electr Control Commun Eng 15(1):15–20

    Article  Google Scholar 

  19. Ahmed F, Kar NC (2017) Analysis of end-winding thermal effects in a totally enclosed fan-cooled induction motor with a die cast copper rotor. IEEE Trans Ind Appl 53(3):3098–3109

    Article  Google Scholar 

  20. Pyrhönen J, Jokinen T, Hrabovcová V (2008) Design of rotating electrical machines. Wiley, Hoboken

    Book  Google Scholar 

  21. Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) Modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175

    Article  Google Scholar 

  22. Markovic M, Saunders L, Perriard Y (2006) Determination of the thermal convection coefficient for a small electric motor. In: Conference record of the 2006 IEEE industry applications conference forty-first IAS annual meeting, vol 1, pp 58–61

  23. Meksi O, Vargas AO (2015) Numerical and experimental determination of external heat transfer coefficient in small TENV electric machines. IEEE Energy Convers Congr Expo (ECCE) 2015:2742–2749

    Google Scholar 

  24. Boglietti A, Cavagnino A (2007) Analysis of the endwinding cooling effects in TEFC induction motors. IEEE Trans Ind Appl 43(5):1214–1222

    Article  Google Scholar 

  25. Staton D, Boglietti A, Cavagnino A (2005) Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors. IEEE Trans Energy Convers 20(3):620–628

    Article  Google Scholar 

  26. Shams Ghahfarokhi P, Kallaste A, Vaimann T, Rassolkin A, Belahcen A (2018) Determination of natural convection heat transfer coefficient over the fin side of a coil system. Int J Heat Mass Transf 126:677–682

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No.1.1.1.2/VIAA/3/19/501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Shams Ghahfarokhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams Ghahfarokhi, P., Kallaste, A., Podgornovs, A. et al. Determination of heat transfer coefficient of finned housing of a TEFC variable speed motor. Electr Eng 103, 1009–1017 (2021). https://doi.org/10.1007/s00202-020-01132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01132-1

Keywords

Navigation