Skip to main content
Log in

A general closed-loop power-decoupling control for reduced-switch converter-fed IM drives

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Twice ripple power exists in single-phase to three-phase reduced-switch induction motor drives, which degrades the performance of the drive system, such as larger total harmonic distortion of the grid current, the larger ripple voltage in the dc link and the larger torque ripple. Most existing power decoupling schemes are open-loop decoupling methods. However, the open-loop decoupling method has the disadvantages of heavy computation and strong dependency of parameters. This paper analyzes all steady state solutions of the decoupling capacitor voltage from the point of view of solving differential equations and presents a unified multi-proportional-resonant closed-loop decoupling method to suppress the ripple voltage on the dc bus. The whole drive system adopts a hybrid predictive control strategy with dual loops to coordinate the operation of each part. Comprehensive experimental results are presented to verify the effectiveness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Domijian A, Hanhock O, Maytrott C (1992) A study and evaluation of power electronic based adjustable speed motor drives for air conditioners and heat pumps whit an example utility case study of the Florida and light company. IEEE Trans Energy Convers 7(3):396–404. https://doi.org/10.1109/60.148558

    Article  Google Scholar 

  2. Noroes Maia AC, Jacobina CB (2017) Single-phase ac–dc–ac topology for grid overvoltage and voltage harmonic mitigation. IET Power Electron 10(12):1626–1637. https://doi.org/10.1049/iet-pel.2016.0934

    Article  Google Scholar 

  3. Lee BK, Fahimi B, Ehsani M (2001) Overview of reduced parts converter topologies for ac motor drives. In: Proceedings on international conference power electronics specialists, Vancouver, Canada, pp 2019–2024. https://doi.org/10.1109/PESC.2001.954418

  4. Heydari M, Fahimi A, Varjani AY (2017) A reduced switch count three-phase AC–AC converter with six power switches: modeling, analysis, and control. IEEE J Emerg Sel Topics Power Electron 5(4):1720–1738. https://doi.org/10.1109/JESTPE.2017.2720722

    Article  Google Scholar 

  5. Shi SQ, Sun Y, Su M (2018) Hybrid predictive control strategy for a low-cost converter-fed IM drive. IET Electr Power Appl 12(4):581–587. https://doi.org/10.1049/iet-epa.2017.0587

    Article  Google Scholar 

  6. Liu WC, Wang KW, Chung HS, Chuang ST (2015) Modeling and design of series voltage compensator for reduction of DC-link capacitance in grid-tie solar inverter. IEEE Trans Power Electron 30(5):2534–2548. https://doi.org/10.1109/TPEL.2014.2336856

    Article  Google Scholar 

  7. Wang H, Blaabjerg F (2014) Reliability of capacitors for DC-link applications in power electronic converters—an overview. IEEE Trans Ind Appl 50(5):3569–3578. https://doi.org/10.1109/TIA.2014.2308357

    Article  Google Scholar 

  8. Zhu G, Wang H, Liang B, Tan S, Jiang J (2016) Enhanced single-phase full-bridge inverter with minimal low-frequency current ripple. IEEE Trans Ind Electron 63(2):937–943. https://doi.org/10.1109/TIE.2015.2491881

    Article  Google Scholar 

  9. Mellincovsky M, Yuhimenko VM, Peretz M, Kuperman A (2017) Low-frequency DC-link ripple elimination in power converters with reduced capacitance by multiresonant direct voltage regulation. IEEE Trans Ind Electron 64(3):2015–2023. https://doi.org/10.1109/TIE.2016.2626241

    Article  Google Scholar 

  10. Abeywardana DBW, Hredzak B, Agelidis VG (2016) A rule-based controller to mitigate DC-side second-order harmonic current in a single-phase boost inverter. IEEE Trans Power Electron 31(2):1665–1679. https://doi.org/10.1109/TPEL.2015.2421494

    Article  Google Scholar 

  11. Sun Y, Liu YL, Su M, Xiong WJ et al (2016) Review of active power decoupling topologies in single-phase systems. IEEE Trans Power Electron 31(7):4778–4794. https://doi.org/10.1109/TPEL.2015.2477882

    Article  Google Scholar 

  12. Tang Y, Blaabjerg F, Loh PC, Jin C, Wang P (2015) Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit. IEEE Trans Power Electron 30(4):1855–1865. https://doi.org/10.1109/TPEL.2014.2327134

    Article  Google Scholar 

  13. Li H, Zhang K, Zhao H, Fan S, Xiong J (2013) Active power decoupling for high-power single-phase PWM rectifiers. IEEE Trans Power Electron 28(3):1308–1319. https://doi.org/10.1109/TPEL.2012.2208764

    Article  Google Scholar 

  14. Serban I (2015) Power decoupling method for single-phase H-bridge inverters with no additional power electronics. IEEE Trans Ind Electron 62(8):4805–4813. https://doi.org/10.1109/TIE.2015.2399274

    Article  Google Scholar 

  15. Tang Y, Qin Z, Blaabjerg F, Loh PC (2015) A dual voltage control strategy for single-phase PWM converters with power decoupling Function. IEEE Trans Power Electron 30(12):7060–7071. https://doi.org/10.1109/TPEL.2014.2385032

    Article  Google Scholar 

  16. Li S, Qi W, Tan SC, Hui SY (2016) Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count. IEEE Trans Power Electron 31(6):4121–4137. https://doi.org/10.1109/TPEL.2015.2476361

    Article  Google Scholar 

  17. Tang Y, Zhu D, Jin C, Wang P, Blaabjerg F (2015) A three-level quasi two-stage single-phase PFC converter with flexible output voltage and improved conversion efficiency. IEEE Trans Power Electron 30(2):717–726. https://doi.org/10.1109/TPEL.2014.2314136

    Article  Google Scholar 

  18. Huang KP, Wang Y, Wai RJ (2019) Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid. IEEE Trans Power Electron 34(3):2938–2955. https://doi.org/10.1109/TPEL.2018.2845466

    Article  Google Scholar 

  19. Cortes P, Kazmierkowski MP, Kennel RM, Quevedo DE, Rodriguez J (2008) Predictive control in power electronics and drives. IEEE Trans Ind Electron 55(12):4312–4324. https://doi.org/10.1109/TIE.2008.2007480

    Article  Google Scholar 

  20. Formentini A, Trentin A, Marchesoni M et al (2015) Speed finite control set model predictive control of a PMSM fed by matrix converter. IEEE Trans Ind Electron 62(11):6786–6796. https://doi.org/10.1109/TIE.2015.2442526

    Article  Google Scholar 

  21. Vazquez S, Rodriguez J, Rivera M et al (2017) Model predictive control for power converters and drives: advances and trends. IEEE Trans Ind Electron 64(2):935–947. https://doi.org/10.1109/TIE.2016.2625238

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant 2018YFB0606005, in part by the National Natural Science Foundation of China under Grant No. 61933011, in part by the Major Project of Changzhutan Self-dependent Innovation Demonstration Area under Grant 2018XK2002, in part by the Project of Innovation-driven Plan in Central South University under Grant 2019CX003, in part by the Scientific Research Project of Hunan Department of Education under Grant No. 18C0787, in part by the CRRC Zhuzhou Electric Locomotive Institute Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanbing Dan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Sun, Y., Dan, H. et al. A general closed-loop power-decoupling control for reduced-switch converter-fed IM drives. Electr Eng 102, 2423–2433 (2020). https://doi.org/10.1007/s00202-020-01023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01023-5

Keywords

Navigation